Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,...Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.展开更多
Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world,...Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world, especially, in the industrialized countries. Good accomplishment has been obtained in the cost reduction of PV systems, for example in 1974, systems cost (100~150) $/W. In 1981, such systems cost less than (10~30) $/W, and now they cost less than 5 $/W. However, more R&D efforts are still necessary, to achieve large-scale cost-effective production of PV systems to make it competitive with diesel generation of electricity,although PV systems have proven to be competitive in rural and remote areas. In this paper, an overview on high efficiency solar cell technologies will be presented.展开更多
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter l...A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.展开更多
Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection fil...Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection films were improved by annealing. Optical absorption and fluorescence of the solar cells increased after annealing. Lattice constants of F-doped SnO2 anti-reflection layers, which were investigated by X-ray diffraction, decreased after annealing. A mechanism of atomic diffusion of F in SnO2 was discussed. The present work indicated a guideline for spherical silicon solar cells with higher efficiencies.展开更多
The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline si...The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.展开更多
The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon...The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.展开更多
Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour d...Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.展开更多
This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125℃. We find that poor quality p-a-Si...This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125℃. We find that poor quality p-a-SiC:H films under regular conditions lead to a restriction of open circuit voltage although the band gap of the i-layer varies widely. A significant improvement in open circuit voltage has been obtained by using high quality p-~SiC:H films optimized at the "low-power regime" under low silane flow rates and high hydrogen dilution conditions.展开更多
Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness...Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.展开更多
Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has...Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has more than 40 years' old history. The early development of the technology and the results, obtained in the last years with this type of solar cell are reviewed. In particular it is demonstrated why the physical understanding of the interface properties and band-structure was important for the development of high efficiency solar cells.展开更多
A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface ...A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.展开更多
Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room te...Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room temperature. Results of the thickness measurement, SEM (scanning electron microscope), Raman, and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage, the deposition rate and network order of the films increase, and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films. The UV-visible transmission spectra show that with the decrease in SiH4/ (SiHn+H2) the thin films' band gap shifts from 1.92 eV to 2.17 eV. These experimental results are in agreement with the theoretic analysis of the DBD discharge. The deposition of a-Si: H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si: H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment.展开更多
Solar cells are now widely used as a clean method for electric energy generation. Among various type of solar cells, we compared the ability between amorphous and tandem (amorphous and polycrystalline) silicon solar c...Solar cells are now widely used as a clean method for electric energy generation. Among various type of solar cells, we compared the ability between amorphous and tandem (amorphous and polycrystalline) silicon solar cells by means of simultaneous running test. This kind of comparison is of importance practically, because the comparison of only inherent characteristics cannot include environmental parameters such as temperature totally. It was concluded that both types of solar cells provided almost the same energy for one year. The amorphous silicon solar cell provided more energy in summer while the tandem solar cell was advantageous in winter. It is due to the fact that the decrease in energy conversion at the higher cell temperature is more noticeable in tandem solar cells.展开更多
We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction st...We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction structures on glass substrates coated with a transparent conductive oxide layer such as SnO2 or ZnO. By controlling boron and phosphorus contaminations, a single-junction microcrystalline silicon cell with a conversion efficiency of 7.47% is achieved with an i-layer thickness of 1.2 μm. In tandem devices, by thickness optimization of the microcrystalline silicon bottom solar cell, we obtained an initial conversion efficiency of 9.91% with an aluminum (Al) back reflector without a dielectric layer. In order to enhance the performance of the tandem solar cells, an improved light trapping structure with a ZnO/Al back reflector is used. As a result, a tandem solar cell with 11.04% of initial conversion efficiency has been obtained.展开更多
Low energy hydrogen ion was used to passivate the electrically active defects existing in grains and grain boundaries of polycrystalline silicon solar cells.Short circuit current of H + implanted cells remarkably...Low energy hydrogen ion was used to passivate the electrically active defects existing in grains and grain boundaries of polycrystalline silicon solar cells.Short circuit current of H + implanted cells remarkably increased before and after preparing TiO 2AR(antireflective)coating.The measurements(at λ=6328) of the optical properties of H + implanted silicon samples show that:the value of absorption coefficient reached the level of a Si;refractive index n and reflectivity R significantly decreased;the optical band gap increased from 1.1 eV to 1.3 eV.The results indicate that Si H bonds have been formed after H + implantation.The calculation shows that the optical thickness cycle of TiO 2 AR coating will reduce correspondingly in order to obtain the optimum optical match between AR coating and implanted silicon since refractive index decreases after H + implantation.展开更多
Silicon solar cells continue to dominate the market,due to the abundance of silicon and their acceptable efficiency.The heterojunction with intrinsic thin layer(HIT)structure is now the dominant technology.Increasing ...Silicon solar cells continue to dominate the market,due to the abundance of silicon and their acceptable efficiency.The heterojunction with intrinsic thin layer(HIT)structure is now the dominant technology.Increasing the efficiency of these cells could expand the development choices for HIT solar cells.We presented a detailed investigation of the emitter a-Si:H(n)lay-er of a p-type bifacial HIT solar cell in terms of characteristic parameters which include layer doping concentration,thickness,band gap width,electron affinity,hole mobility,and so on.Solar cell composition:(ZnO/nc-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(i)/nc-Si:H(p)/ZnO).The results reveal optimal values for the investigated parameters,for which the highest computed efficiency is 26.45%when lighted from the top only and 21.21%when illuminated from the back only.展开更多
Short-wavelength ultraviolet(UV)photons adversely affect hydrogenated amorphous silicon thin films,as well as on silicon heterojunction(SHJ)solar cells and modules.This research examines the impact and mechanisms of p...Short-wavelength ultraviolet(UV)photons adversely affect hydrogenated amorphous silicon thin films,as well as on silicon heterojunction(SHJ)solar cells and modules.This research examines the impact and mechanisms of photon-induced performance changes.UV A exposure disrupts Si-H bonds,significantly reducing hydrogen content in both intrinsic and doped hydrogenated amorphous silicon(a-Si:H)films.This disruption impairs the interface passivation effect,leading to the degradation of SHJ solar cells and modules,primarily indicated by a decrease in open-circuit voltage(V_(oc))and fill factor(FF).UV irradiation from the front side of SHJ solar cells reduces V_(oc)and FF by 1.38%and 2.28%,respectively,resulting in a 2.28%efficiency decline.Cells irradiated from the backside show decreases in V_(oc)and FF of approximately 1.96%and 2.73%,respectively,leading to an overall efficiency reduction of approximately 3.58%.However,subsequent light-soaking increases V_(oc)and FF by approximately 0.96%and 1.37%,respectively,for frontside-irradiated cells,achieving an overall efficiency improvement of approximately 2.51%.Thus,light-soaking effectively recovers performance losses caused by UV irradiation in SHJ solar cells.This research clarifies the mechanisms influencing the performance of a-Si:H thin films,SHJ solar cells,and modules under UV irradiation and light-soaking,offering significant contributions towards the development of highly efficient and reliable SHJ devices.展开更多
Reactive sputtered boron-doped zinc oxide(BZO) film was deposited from argon,hydrogen and boron gas mixture.The reactive sputtering technique provides us the flexibility of changing the boron concentration in the prod...Reactive sputtered boron-doped zinc oxide(BZO) film was deposited from argon,hydrogen and boron gas mixture.The reactive sputtering technique provides us the flexibility of changing the boron concentration in the produced films by using the same intrinsic zinc oxide target.Textured surface was obtained in the as-deposited films.The surface morphology and the opto-electronic properties of the films can be controlled by simply varying the gas concentration ratio.By varying the gas concentration ratio,the best obtained resistivity ~6.51×10^-4Ω-cm,mobility ~19.05 cm^2 V^-1 s^-1 and sheet resistance ~7.23Ω/□ were obtained.At lower wavelength of light,the response of the deposited films improves with the increase of boron in the gas mixture and the overall transmission in the wavelength region 350-1100 nm of all the films are>85 %.We also fabricated amorphous silicon(a-Si) thin film solar cell on the best obtained BZO layers.The overall efficiency of the a-Si solar cell is 8.14 %,found on optimized BZO layer.展开更多
Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preven...Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preventing effectively the oxidation of silicon.The grown Si thin films were identified by SEM,AES and C-V measurements.展开更多
Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen ...Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen dilution ratios on electrical characteristics is investigated to study the phase transition from amorphous to microcrystalline silicon. During the deposition process,the optical emission spectroscopy (OES) from plasma is recorded and compared with the Raman spectra of the films,by which the microstructure evolution of different 1-12 dilution ratios and its influence on the performance of μc-Si: H n-i-p solar cells is investigated.展开更多
文摘Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.
文摘Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world, especially, in the industrialized countries. Good accomplishment has been obtained in the cost reduction of PV systems, for example in 1974, systems cost (100~150) $/W. In 1981, such systems cost less than (10~30) $/W, and now they cost less than 5 $/W. However, more R&D efforts are still necessary, to achieve large-scale cost-effective production of PV systems to make it competitive with diesel generation of electricity,although PV systems have proven to be competitive in rural and remote areas. In this paper, an overview on high efficiency solar cell technologies will be presented.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z219)the Jiangsu Innovation Program for Graduate Education, China (Grant No. CXZZ11 0206)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.
文摘Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection films were improved by annealing. Optical absorption and fluorescence of the solar cells increased after annealing. Lattice constants of F-doped SnO2 anti-reflection layers, which were investigated by X-ray diffraction, decreased after annealing. A mechanism of atomic diffusion of F in SnO2 was discussed. The present work indicated a guideline for spherical silicon solar cells with higher efficiencies.
文摘The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.
文摘The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.
文摘Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA05Z422), the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, and 2011CBA00707), and the Natural Science Foundation of Tianjin (Grant No. 08JCZDJC22200).
文摘This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125℃. We find that poor quality p-a-SiC:H films under regular conditions lead to a restriction of open circuit voltage although the band gap of the i-layer varies widely. A significant improvement in open circuit voltage has been obtained by using high quality p-~SiC:H films optimized at the "low-power regime" under low silane flow rates and high hydrogen dilution conditions.
基金National Natural Science Foundation of China (Nos.60407013,60876081)the Shanghai-Applied Materials Research and Development Fund of China (No.06SA04)the National High Technology Research and Development Program of China (Nos.2009AA04Z317,2007AA04Z354-03)
文摘Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.
文摘Some commercially available solar panels with very high efficiencies for terrestrial photovoltaic applications are based on the amorphous silicon on crystalline silicon material system. This type ofheterostructure has more than 40 years' old history. The early development of the technology and the results, obtained in the last years with this type of solar cell are reviewed. In particular it is demonstrated why the physical understanding of the interface properties and band-structure was important for the development of high efficiency solar cells.
基金This project was financially supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (No.0329571B).
文摘A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.
基金the National Natural Science Foundation of china(No.50372060)
文摘Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room temperature. Results of the thickness measurement, SEM (scanning electron microscope), Raman, and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage, the deposition rate and network order of the films increase, and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films. The UV-visible transmission spectra show that with the decrease in SiH4/ (SiHn+H2) the thin films' band gap shifts from 1.92 eV to 2.17 eV. These experimental results are in agreement with the theoretic analysis of the DBD discharge. The deposition of a-Si: H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si: H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment.
文摘Solar cells are now widely used as a clean method for electric energy generation. Among various type of solar cells, we compared the ability between amorphous and tandem (amorphous and polycrystalline) silicon solar cells by means of simultaneous running test. This kind of comparison is of importance practically, because the comparison of only inherent characteristics cannot include environmental parameters such as temperature totally. It was concluded that both types of solar cells provided almost the same energy for one year. The amorphous silicon solar cell provided more energy in summer while the tandem solar cell was advantageous in winter. It is due to the fact that the decrease in energy conversion at the higher cell temperature is more noticeable in tandem solar cells.
基金supported by the Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)the Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+2 种基金the National Natural Science Foundation of China (Grant No. 60976051)the International Cooperation Project between China–Greece Government (GrantNo. 2009DFA62580)the Program for New Century Excellent Talents in University of China (NCET-08-0295)
文摘We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction structures on glass substrates coated with a transparent conductive oxide layer such as SnO2 or ZnO. By controlling boron and phosphorus contaminations, a single-junction microcrystalline silicon cell with a conversion efficiency of 7.47% is achieved with an i-layer thickness of 1.2 μm. In tandem devices, by thickness optimization of the microcrystalline silicon bottom solar cell, we obtained an initial conversion efficiency of 9.91% with an aluminum (Al) back reflector without a dielectric layer. In order to enhance the performance of the tandem solar cells, an improved light trapping structure with a ZnO/Al back reflector is used. As a result, a tandem solar cell with 11.04% of initial conversion efficiency has been obtained.
文摘Low energy hydrogen ion was used to passivate the electrically active defects existing in grains and grain boundaries of polycrystalline silicon solar cells.Short circuit current of H + implanted cells remarkably increased before and after preparing TiO 2AR(antireflective)coating.The measurements(at λ=6328) of the optical properties of H + implanted silicon samples show that:the value of absorption coefficient reached the level of a Si;refractive index n and reflectivity R significantly decreased;the optical band gap increased from 1.1 eV to 1.3 eV.The results indicate that Si H bonds have been formed after H + implantation.The calculation shows that the optical thickness cycle of TiO 2 AR coating will reduce correspondingly in order to obtain the optimum optical match between AR coating and implanted silicon since refractive index decreases after H + implantation.
文摘Silicon solar cells continue to dominate the market,due to the abundance of silicon and their acceptable efficiency.The heterojunction with intrinsic thin layer(HIT)structure is now the dominant technology.Increasing the efficiency of these cells could expand the development choices for HIT solar cells.We presented a detailed investigation of the emitter a-Si:H(n)lay-er of a p-type bifacial HIT solar cell in terms of characteristic parameters which include layer doping concentration,thickness,band gap width,electron affinity,hole mobility,and so on.Solar cell composition:(ZnO/nc-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(i)/nc-Si:H(p)/ZnO).The results reveal optimal values for the investigated parameters,for which the highest computed efficiency is 26.45%when lighted from the top only and 21.21%when illuminated from the back only.
基金supported by the Sichuan Science and Technology Program(2023YFG0098 and 2023ZYD0163)National Natural Science Foundation of China(T2322028)+2 种基金Science and Technology Commission of Shanghai Municipality(22ZR1473200)Chengdu Science and Technology Program(2024-JB00-00010-GX)Sichuan Province Key Laboratory of Display Science and Technology。
文摘Short-wavelength ultraviolet(UV)photons adversely affect hydrogenated amorphous silicon thin films,as well as on silicon heterojunction(SHJ)solar cells and modules.This research examines the impact and mechanisms of photon-induced performance changes.UV A exposure disrupts Si-H bonds,significantly reducing hydrogen content in both intrinsic and doped hydrogenated amorphous silicon(a-Si:H)films.This disruption impairs the interface passivation effect,leading to the degradation of SHJ solar cells and modules,primarily indicated by a decrease in open-circuit voltage(V_(oc))and fill factor(FF).UV irradiation from the front side of SHJ solar cells reduces V_(oc)and FF by 1.38%and 2.28%,respectively,resulting in a 2.28%efficiency decline.Cells irradiated from the backside show decreases in V_(oc)and FF of approximately 1.96%and 2.73%,respectively,leading to an overall efficiency reduction of approximately 3.58%.However,subsequent light-soaking increases V_(oc)and FF by approximately 0.96%and 1.37%,respectively,for frontside-irradiated cells,achieving an overall efficiency improvement of approximately 2.51%.Thus,light-soaking effectively recovers performance losses caused by UV irradiation in SHJ solar cells.This research clarifies the mechanisms influencing the performance of a-Si:H thin films,SHJ solar cells,and modules under UV irradiation and light-soaking,offering significant contributions towards the development of highly efficient and reliable SHJ devices.
基金The work has been supported by the Science and Engineering Research Board(SERB),Department of Science and Technology(SR/FTP/PS-175/2012)。
文摘Reactive sputtered boron-doped zinc oxide(BZO) film was deposited from argon,hydrogen and boron gas mixture.The reactive sputtering technique provides us the flexibility of changing the boron concentration in the produced films by using the same intrinsic zinc oxide target.Textured surface was obtained in the as-deposited films.The surface morphology and the opto-electronic properties of the films can be controlled by simply varying the gas concentration ratio.By varying the gas concentration ratio,the best obtained resistivity ~6.51×10^-4Ω-cm,mobility ~19.05 cm^2 V^-1 s^-1 and sheet resistance ~7.23Ω/□ were obtained.At lower wavelength of light,the response of the deposited films improves with the increase of boron in the gas mixture and the overall transmission in the wavelength region 350-1100 nm of all the films are>85 %.We also fabricated amorphous silicon(a-Si) thin film solar cell on the best obtained BZO layers.The overall efficiency of the a-Si solar cell is 8.14 %,found on optimized BZO layer.
文摘Low temperature liquid phase epitaxy of silicon thin films was successfully carried out at a temperature of (400~500)℃,using Au/Bi alloy as a Si-saturated Sn solution was used to protect the substrate surface,preventing effectively the oxidation of silicon.The grown Si thin films were identified by SEM,AES and C-V measurements.
基金the State Key Development Program for Basic Research of China(Nos.2006CB202602,2006CB202603)Tianjin Assistant Foundation for the National Basic Research Program of China(No.07QTPTJC29500)~~
文摘Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen dilution ratios on electrical characteristics is investigated to study the phase transition from amorphous to microcrystalline silicon. During the deposition process,the optical emission spectroscopy (OES) from plasma is recorded and compared with the Raman spectra of the films,by which the microstructure evolution of different 1-12 dilution ratios and its influence on the performance of μc-Si: H n-i-p solar cells is investigated.