Fluorine-incorporated hydrogenated fullerene-like nanostructure amorphous carbon films(F-FLC)were synthesized by employing the direct current plasma enhanced chemical vapor deposition(dc-PECVD)technique using a mixtur...Fluorine-incorporated hydrogenated fullerene-like nanostructure amorphous carbon films(F-FLC)were synthesized by employing the direct current plasma enhanced chemical vapor deposition(dc-PECVD)technique using a mixture of methane(CH4),tetra-fluoromethane(CF4),and hydrogen(H2)as the working gases.The effect of the fluorine content on the bonding structure,surface roughness,hydrophobic,mechanical,and tribological properties of the films was systematically investigated using Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),Raman analysis,atomic force microscope(AFM),contact angle goniometer,nano-indenter,and reciprocating ball-on-disc tester,respectively.The fluorine content in the films increased from 0 to 2.1 at.%as the CF4 gas flow ratio increased from 0 to 3 sccm,and incorporated fluorine atoms existed in the form of C-FX(X=1,2,3)bonds in the film.The fullerene nanostructure embedded in the hydrogenated amorphous carbon films was confirmed by Raman analysis.The water contact angle was significantly increased because of fluorine doping,which indicates that the hydrophobicity of the carbon films could be adjusted to some extent by the fluorine doping.The hardness and elastic modulus of the films remained relatively high(22 GPa)as the fluorine content increased.Furthermore,the friction coefficient of the carbon films was significantly reduced and the wear resistance was enhanced by fluorine doping.展开更多
Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hy...Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.展开更多
Iron catalysis has attracted a wealth of interdependent research for its abundance,low price,and nontoxicity.Herein,a convenient and stable iron oxide(Fe2O3)‐based catalyst,in which active Fe2O3nanoparticles(NPs)were...Iron catalysis has attracted a wealth of interdependent research for its abundance,low price,and nontoxicity.Herein,a convenient and stable iron oxide(Fe2O3)‐based catalyst,in which active Fe2O3nanoparticles(NPs)were embedded into carbon films,was prepared via the pyrolysis of iron‐polyaniline complexes on carbon particles.The obtained catalyst shows a large surface area,uniform pore channel distribution,with the Fe2O3NPs homogeneously dispersed across the hybrid material.Scanning electron microscopy,Raman spectroscopy and X‐ray diffraction analyses of the catalyst prepared at900°C(Fe2O3@G‐C‐900)and an acid‐pretreated commercial activated carbon confirmed that additional carbon materials formed on the pristine carbon particles.Observation of high‐resolution transmission electron microscopy images also revealed that the Fe2O3NPs in the hybrid were encapsulated by a thin carbon film.The Fe2O3@G‐C‐900composite was highly active and stable for the direct selective hydrogenation of nitroarenes to anilines under mild conditions,where previously noble metals were required.The synthetic strategy and the structure of the iron oxide‐based composite may lead to the advancement of cost‐effective and sustainable industrial processes.展开更多
In international thermonuclear experimental reactor (ITER), one of major concerns is an in-vessel tritium inventory from a point of safety. It is believed that the carbon-tritium co-deposited film produced by the er...In international thermonuclear experimental reactor (ITER), one of major concerns is an in-vessel tritium inventory from a point of safety. It is believed that the carbon-tritium co-deposited film produced by the erosion of carbon diverter walls has a high tritium concentration. However, no systematic evaluation for the tritium concentration has been conducted yet. In the present study, the carbon-hydrogen co-deposited films were prepared at the wall of pumping duct in Local Island Divertor experiments of LHD, in order to evaluate the tritium concentration of the co-deposited films produced in ITER. The hydrogen concentration was obtained by measuring the amount of retained hydrogen in the film and the mass density of the film. The hydrogen concentration of the co-deposited carbon film at the wall not facing to the plasma with a low temperature was extremely high, 1.3 in the atomic ratio of H/C. This value is triple times higher than the previous value obtained so far. The crystal structure of the co-deposited carbon film observed by Raman spectroscopy showed very unique structure (polymeric aC:H), which is well consistent with the high hydrogen concentration. The present study suggests that the tritium concentration of the co-deposited film in ITER depends on the wall position and becomes quite high as high as T/C-0.65. The results obtained contribute to evaluate the in-vessel tritium inventory owing to the co-deposited carbon films.展开更多
The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influen...The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.展开更多
An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by t...An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.展开更多
The deposition process of hydrogenated diamond-like carbon (DLC) film greatly affects its frictional properties. In this study, CH3 radicals are selected as source species to deposit hydrogenated DLC films for molecul...The deposition process of hydrogenated diamond-like carbon (DLC) film greatly affects its frictional properties. In this study, CH3 radicals are selected as source species to deposit hydrogenated DLC films for molecular dynamics simulation. The growth and structural properties of hydrogenated DLC films are investigated and elucidated in detail. By comparison and statistical analysis, the authors find that the ratio of carbon to hydrogen in the films generally shows a monotonously increasing trend with the increase of impact energy. Carbon atoms are more reactive during deposition and more liable to bond with substrate atoms than hydrogen atoms. In addition, there exists a peak value of the number of hydrogen atoms deposited in hydrogenated DLC films. The trends of the variation are opposite on the two sides of this peak point, and it becomes stable when impact energy is greater than 80 eV. The average relative density also indicates a rising trend along with the increment of impact energy, while it does not reach the saturation value until impact energy comes to 50 eV. The hydrogen content in source species is a key factor to determine the hydrogen content in hydrogenated DLC films. When the hydrogen content in source species is high, the hydrogen content in hydrogenated DLC films is accordingly high.展开更多
In this study, we prepared horn-like ZnO structures on carbon films(ZnO/CF) by electrodeposition and decorated the ZnO horns with different metals(Ag, Au, and Pt) via photodeposition(M-ZnO/CF). Using M-ZnO/CF as...In this study, we prepared horn-like ZnO structures on carbon films(ZnO/CF) by electrodeposition and decorated the ZnO horns with different metals(Ag, Au, and Pt) via photodeposition(M-ZnO/CF). Using M-ZnO/CF as photocatalysts, we examined ways to enhance solar hydrogen production from various points of view, such as modifying the intrinsic physical properties and thermodynamics of the materials, and varying the chemical environment during M-ZnO/CF fabrication. In particular, we focused on the effects of the carbon film and metals in M-ZnO/CF hybrid photocatalysts on solar hydrogen production. The type of metal nanoparticles is an important factor in solar hydrogen production because the deposition rate and electrical conductivity of each metal affect the proton-water reduction ability.展开更多
基金the National Key Basic Research and Development(973)Program of China(Grant No.2013CB632300)the National Natural Science Foundation of China(Grant Nos.51275508 and 51205383)the Ministry of Science and Technology of China(Grant No.2010DFA63610)for financial support.
文摘Fluorine-incorporated hydrogenated fullerene-like nanostructure amorphous carbon films(F-FLC)were synthesized by employing the direct current plasma enhanced chemical vapor deposition(dc-PECVD)technique using a mixture of methane(CH4),tetra-fluoromethane(CF4),and hydrogen(H2)as the working gases.The effect of the fluorine content on the bonding structure,surface roughness,hydrophobic,mechanical,and tribological properties of the films was systematically investigated using Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),Raman analysis,atomic force microscope(AFM),contact angle goniometer,nano-indenter,and reciprocating ball-on-disc tester,respectively.The fluorine content in the films increased from 0 to 2.1 at.%as the CF4 gas flow ratio increased from 0 to 3 sccm,and incorporated fluorine atoms existed in the form of C-FX(X=1,2,3)bonds in the film.The fullerene nanostructure embedded in the hydrogenated amorphous carbon films was confirmed by Raman analysis.The water contact angle was significantly increased because of fluorine doping,which indicates that the hydrophobicity of the carbon films could be adjusted to some extent by the fluorine doping.The hardness and elastic modulus of the films remained relatively high(22 GPa)as the fluorine content increased.Furthermore,the friction coefficient of the carbon films was significantly reduced and the wear resistance was enhanced by fluorine doping.
基金supported by Shenzhen Key Laboratory of Sensors Technology Open Fund of China (Nos.SST200908, SST200911)
文摘Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.
基金supported by the National Natural Science Foundation of China(21473155,21273198)Natural Science Foundation of Zhejiang Province(LZ12B03001)~~
文摘Iron catalysis has attracted a wealth of interdependent research for its abundance,low price,and nontoxicity.Herein,a convenient and stable iron oxide(Fe2O3)‐based catalyst,in which active Fe2O3nanoparticles(NPs)were embedded into carbon films,was prepared via the pyrolysis of iron‐polyaniline complexes on carbon particles.The obtained catalyst shows a large surface area,uniform pore channel distribution,with the Fe2O3NPs homogeneously dispersed across the hybrid material.Scanning electron microscopy,Raman spectroscopy and X‐ray diffraction analyses of the catalyst prepared at900°C(Fe2O3@G‐C‐900)and an acid‐pretreated commercial activated carbon confirmed that additional carbon materials formed on the pristine carbon particles.Observation of high‐resolution transmission electron microscopy images also revealed that the Fe2O3NPs in the hybrid were encapsulated by a thin carbon film.The Fe2O3@G‐C‐900composite was highly active and stable for the direct selective hydrogenation of nitroarenes to anilines under mild conditions,where previously noble metals were required.The synthetic strategy and the structure of the iron oxide‐based composite may lead to the advancement of cost‐effective and sustainable industrial processes.
文摘In international thermonuclear experimental reactor (ITER), one of major concerns is an in-vessel tritium inventory from a point of safety. It is believed that the carbon-tritium co-deposited film produced by the erosion of carbon diverter walls has a high tritium concentration. However, no systematic evaluation for the tritium concentration has been conducted yet. In the present study, the carbon-hydrogen co-deposited films were prepared at the wall of pumping duct in Local Island Divertor experiments of LHD, in order to evaluate the tritium concentration of the co-deposited films produced in ITER. The hydrogen concentration was obtained by measuring the amount of retained hydrogen in the film and the mass density of the film. The hydrogen concentration of the co-deposited carbon film at the wall not facing to the plasma with a low temperature was extremely high, 1.3 in the atomic ratio of H/C. This value is triple times higher than the previous value obtained so far. The crystal structure of the co-deposited carbon film observed by Raman spectroscopy showed very unique structure (polymeric aC:H), which is well consistent with the high hydrogen concentration. The present study suggests that the tritium concentration of the co-deposited film in ITER depends on the wall position and becomes quite high as high as T/C-0.65. The results obtained contribute to evaluate the in-vessel tritium inventory owing to the co-deposited carbon films.
文摘The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.
基金supported by the National Natural Science Foundation of China (21173088)the Science and Technology Project of Guangdong Province (2014A030312007, 2015A050502012, 2016A010104013)+1 种基金the China Postdoctoral Science Foundation (2016M592493)the Open Research Fund of Hunan Key Laboratory of Applied Environmental Photocatalysis (CCSU-XT-06),Changsha University~~
文摘An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.
基金the National Natural Science Foundation of China (Grant No. 50575173)
文摘The deposition process of hydrogenated diamond-like carbon (DLC) film greatly affects its frictional properties. In this study, CH3 radicals are selected as source species to deposit hydrogenated DLC films for molecular dynamics simulation. The growth and structural properties of hydrogenated DLC films are investigated and elucidated in detail. By comparison and statistical analysis, the authors find that the ratio of carbon to hydrogen in the films generally shows a monotonously increasing trend with the increase of impact energy. Carbon atoms are more reactive during deposition and more liable to bond with substrate atoms than hydrogen atoms. In addition, there exists a peak value of the number of hydrogen atoms deposited in hydrogenated DLC films. The trends of the variation are opposite on the two sides of this peak point, and it becomes stable when impact energy is greater than 80 eV. The average relative density also indicates a rising trend along with the increment of impact energy, while it does not reach the saturation value until impact energy comes to 50 eV. The hydrogen content in source species is a key factor to determine the hydrogen content in hydrogenated DLC films. When the hydrogen content in source species is high, the hydrogen content in hydrogenated DLC films is accordingly high.
基金supported by the DGIST R&D Program of Ministry of Science,ICT and Future Planning of Korea (16-NB-03)
文摘In this study, we prepared horn-like ZnO structures on carbon films(ZnO/CF) by electrodeposition and decorated the ZnO horns with different metals(Ag, Au, and Pt) via photodeposition(M-ZnO/CF). Using M-ZnO/CF as photocatalysts, we examined ways to enhance solar hydrogen production from various points of view, such as modifying the intrinsic physical properties and thermodynamics of the materials, and varying the chemical environment during M-ZnO/CF fabrication. In particular, we focused on the effects of the carbon film and metals in M-ZnO/CF hybrid photocatalysts on solar hydrogen production. The type of metal nanoparticles is an important factor in solar hydrogen production because the deposition rate and electrical conductivity of each metal affect the proton-water reduction ability.