期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Hydrogenation of graphene nanoflakes and C-H bond dissociation of hydrogenated graphene nanoflakes: a density functional theory study
1
作者 Sheng Tao Hui-Ting Liu +2 位作者 Liu-Ming Yan Bao-Hua Yue Ai-Jun Li 《Advances in Manufacturing》 SCIE CAS CSCD 2017年第3期289-298,共10页
The Gibbs free energy change for the hydro- genation of graphene nanoflakes Cn (n = 24, 28, 30 and 32) and the C-H bond dissociation energy of hydrogenated graphene nanoflakes CnHm (n = 24, 28, 30 and 32; and m = 1... The Gibbs free energy change for the hydro- genation of graphene nanoflakes Cn (n = 24, 28, 30 and 32) and the C-H bond dissociation energy of hydrogenated graphene nanoflakes CnHm (n = 24, 28, 30 and 32; and m = 1, 2 and 3) are evaluated using density functional theory calculations. It is concluded that the graphene nanoflakes and hydrogenated graphene nanoflakes accept the orth- aryne structure with peripheral carbon atoms bonded via the most triple bonds and leaving the least unpaired dan- gling electrons. Five-membered rings are formed at the deep bay sites attributing to the stabilization effect from the pairing of dangling electrons. The hydrogenation reactions which eliminate one unpaired dangling electron and thus decrease the overall multiplicity of the graphene nanoflakes or hydrogenated graphene nanoflakes are spontaneous with negative or near zero Gibbs free energy change. And the resulting C-H bonds are stable with bond dissociation energy in the same range as those of aromatic compounds. The other C-H bonds are not as stable attributing to the excessive unpaired dangling electrons being filled into the C-H anti-bond orbital. 展开更多
关键词 graphene nanoflake · hydrogenated graphenenanoflake. Orth-aryne · Hydrogenation reaction· Bonddissociation energy · Density functional theory
原文传递
Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
2
作者 Mohsen Yarmohammadi 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期375-381,共7页
The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacit... The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacity(EHC) for four hydrogenated structures, including monolayer chair-like, table-like, bilayer AA- and finally AB-stacked graphene. After hydrogenation, monolayer graphene and bilayer graphene are behave as semiconducting systems owning a wide direct band gap and this means that all orbitals have several states around the Fermi level. The energy gap in DOS and Schottky anomaly in EHC curves of these structures are compared together illustrating the maximum and minimum band gaps are appear for monolayer chair-like and bilayer AA-stacked graphane, respectively. In spite of these, our findings show that the maximum and minimum values of Schottky anomaly appear for hydrogenated bilayer AA-stacked and monolayer table-like configurations, respectively. 展开更多
关键词 hydrogenated monolayer and bilayer graphene Harrison model electronic heat capacity density of states Green's function
下载PDF
A nano-engineered graphene/carbon nitride hybrid for photocatalytic hydrogen evolution
3
作者 Xiaobo Li Yao Zheng +1 位作者 Anthony F.Masters Thomas Maschmeyer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期223-225,共3页
A metal-free photocatalytic hydrogen evolution system was successfully fabricated using heteroatom doped graphene materials as electron-transfer co-catalysts and carbon nitride as a semiconductor. The catalytic role o... A metal-free photocatalytic hydrogen evolution system was successfully fabricated using heteroatom doped graphene materials as electron-transfer co-catalysts and carbon nitride as a semiconductor. The catalytic role of graphene is significantly dependent on the heteroatom dopant of the graphene, such as O, S, B, N doped/undoped graphene co-catalysts, and N-graphene shows the best catalytic hydrogen evolution rate. 展开更多
关键词 Carbon nitride Co-catalyst graphene Hydrogen evolution Photocatalysis
下载PDF
Acetic Acid Assistant Hydrogenation of Graphene Sheets with Ferromagnetism
4
作者 SUN Qiushi WANG Xiaofeng +5 位作者 LI Benxian WU Yunpeng ZHANG Ziqing ZHANG Xinyang ZHAO Xudong LIU Xiaoyang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第3期344-349,共6页
Ferromagnetism of pure carbon-based materials has been widely researched for several years. In therocially and experimentally, semi-hydrogenation graphene sheets exhibit ferromagnitism, which is related to the degree ... Ferromagnetism of pure carbon-based materials has been widely researched for several years. In therocially and experimentally, semi-hydrogenation graphene sheets exhibit ferromagnitism, which is related to the degree of hydrogenation. Here we reported the controllable hydrogenation of graphene using ball-milling method with acetic acid as hydrogenating agent. The hydrogenation graphene sheets were characterized by means of transmission electron microscopy(TEM), Raman spectroscopy and X-ray photoelectron spectroscopy, and magnetic measurement. The relusts of Raman spectroscopy demonstrate that the relative intensity of D band increases with the hydrogenation degree. The resluts of magnetic meansurement indicate the maximal magnetic moment of 0.274 A·m^2/kg at 2 K for semi-hydrogenation graphene. 展开更多
关键词 graphene hydrogenated graphene Ball-milling FERROMAGNETISM
原文传递
Self-healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide 被引量:8
5
作者 Yi-Gang Luan Xiao-A Zhang +2 位作者 Sheng-Ling Jiang Jian-Huan Chen Ya-Fei Lyu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第5期584-591,共8页
A self-healing supramolecular polymer composite(HSP-GO) was designed and prepared via incorporation of modified graphene oxide to hyperbranched polymer by hydrogen-bonding interactions. The polymer matrix based on a... A self-healing supramolecular polymer composite(HSP-GO) was designed and prepared via incorporation of modified graphene oxide to hyperbranched polymer by hydrogen-bonding interactions. The polymer matrix based on amino-terminated hyperbranched polymer(HSP-NH_2) was synthesized by carboxylation, Curtius rearrangement, and amination of hydroxyl-terminated hyperbranched polyester(HP-OH), while the modified graphene oxide was prepared by transformation of hydroxyl to isocyanate and further to carbamate ester. Spectroscopic methods were utilized to characterize the obtained polymer composites. Stress-strain test was selected to carefully study the self-healing property of HSP-GO. It is found that a small amount of modified graphene oxide(up to 2 wt%) improves the glass transition temperature(T_g), tensile strength, Young's modulus, and self-healing efficiency of the polymer composites. After healed at room temperature for 10 min, the addition of modified graphene oxide improves the self-healing efficiency to 37% of its original tensile strength. The experiment result shows that the self-healing efficiency is related to the density of hydrogen bonding site and the molecular movement. 展开更多
关键词 Self-healing Supramolecular polymer graphene oxide Hydrogen bonding
原文传递
Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions 被引量:8
6
作者 Majid Khan Ammar Bin Yousaf +5 位作者 Mingming Chen Chengsha Wei Xibo Wu Ningdong Huang Zemin Qi Liangbin Li 《Nano Research》 SCIE EI CAS CSCD 2016年第3期837-848,共12页
We report a three-dimensional hierarchical ternary hybrid composite of molybdenum disulfide (MoS2), reduced graphene oxide (GO), and carbon nano- tubes (CNTs) prepared by a two-step process. Firstly, reduced GO-... We report a three-dimensional hierarchical ternary hybrid composite of molybdenum disulfide (MoS2), reduced graphene oxide (GO), and carbon nano- tubes (CNTs) prepared by a two-step process. Firstly, reduced GO-CNT composites with three-dimensional microstructuresare synthesized by hydrothermal treatment of an aqueous dispersion of GO and CNTs to form a composite structure via π-π interactions. Then, MoS2 nanoparticles are hydrothermally grown on the surfaces of the GO-CNT composite. This ternary composite shows superior electrocatalytic activity and stability in the hydrogen evolution reaction, with a low onset potential of only 35 mV, a Tafel slope of -38 mV.decade-1 and an apparent exchange current density of 74.25 mA.cm-2. The superior hydrogen evolution activity stemmed from the synergistic effect of MoS2 with its electrocatalytically active edge-sites and excellent electrical coupling to the underlying graphene and CNT network. 展开更多
关键词 3D nanostructure MoS2 graphene carbon nanotubes hydrogen evolutionreaction
原文传递
Au nanoparticles decorated graphene/nickel foam nanocomposite for sensitive detection of hydrogen peroxide 被引量:3
7
作者 Xiaojuan Wang Xinli Guo +7 位作者 Jian Chen Chuang Ge Hongyi Zhang Yuanyuan Liu Li Zhao Yao Zhang Zengmei Wang Litao Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期246-250,共5页
The Au nanoparticles decorated graphene(AuNPs@Gr)/nickel foam(Gr/NiF) nanocomposite(AuNPs@Gr/NiF) was prepared by chemical vapor deposition followed by electrophoretic deposition of AuNPs on Gr/NiF. The morpholo... The Au nanoparticles decorated graphene(AuNPs@Gr)/nickel foam(Gr/NiF) nanocomposite(AuNPs@Gr/NiF) was prepared by chemical vapor deposition followed by electrophoretic deposition of AuNPs on Gr/NiF. The morphology, microstructure and sensing performance of the as-prepared AuNPs@Gr/NiF nanocomposite were characterized and measured, respectively by scanning electron microscope, transmission electron microscope, ultraviolet visible spectroscopy and chemical workstation. The asprepared AuNPs@Gr/NiF nanocomposite was used as the electrode to construct a chemical sensor for the detection of hydrogen peroxide(H2O2). The results showed that the AuNPs distributed homogenously and stably on the surface of Gr/NiF. The chemical sensor exhibits a sensitive and selective performance to the detection of H2O2. 展开更多
关键词 Au nanoparticles graphene Nickel foam Nanocomposite Hydrogen peroxide(H2O2)
原文传递
Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane 被引量:2
8
作者 Yao Chen Xinchun Yang +1 位作者 Mitsunori Kitta Qiang Xu 《Nano Research》 SCIE EI CAS CSCD 2017年第11期3811-3816,共6页
Downsizing noble metal nanoparticles,such as Pt,is an essential goal for many catalytic reactions.A non-noble metal sacrificial approach was used to immobilize monodispersed Pt nanoparticles (NPs) with a mean size o... Downsizing noble metal nanoparticles,such as Pt,is an essential goal for many catalytic reactions.A non-noble metal sacrificial approach was used to immobilize monodispersed Pt nanoparticles (NPs) with a mean size of 1.2 nm on reduced graphene oxide (RGO).ZnO co-precipitated with Pt NPs and subsequently sacrificed by acid etching impedes the diffusion of Pt atoms onto the primary Pt particles and also their aggregation during the reduction of precursors.The resulting ultrafine Pt nanoparticles exhibit high activity (a turnover frequency of 284 min-1 at 298 K) in the hydrolytic dehydrogenation of ammonia borane.The non-noble metal sacrificial approach is demonstrated as a general approach to synthesize well-dispersed noble metal NPs for catalysis. 展开更多
关键词 catalysis hydrogen generation reduced graphene oxide platinum ammonia borane non-noble metal sacrificial approach
原文传递
Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene
9
作者 Yuya Murata Tommaso Cavallucci +7 位作者 Valentina Tozzini Niko Pavliček Leo Gross Gerhard Meyer Makoto Takamura Hiroki Hibino Fabio Beltram Stefan Heun 《Nano Research》 SCIE EI CAS CSCD 2018年第2期864-873,共10页
Si dangling bonds at the interface of quasi-free-standing monolayer graphene (QFMLG) are known to act as scattering centers that can severely affect carrier mobility Herein, we investigate the atomic and electronic ... Si dangling bonds at the interface of quasi-free-standing monolayer graphene (QFMLG) are known to act as scattering centers that can severely affect carrier mobility Herein, we investigate the atomic and electronic structure of Si dangling bonds in QFMLG using low-temperature scanning tunneling microscopy/ spectroscopy (STM/STS), atomic force microscopy (AFM), and density functional theory (DFT) calculations. Two types of defects with different contrast were observed on a flat graphene terrace by STM and AFM; in particular, their STM contrast varied with the bias voltage. Moreover, these defects showed characteristic STS peaks at different energies, 1.1 and 1.4 eV. The comparison of the experimental data with the DFT calculations indicates that the defects with STS peak energies of 1.1 and 1.4 eV consist of clusters of three and four Si dangling bonds, respectively. The relevance of the present results for the optimization of graphene synthesis is discussed. 展开更多
关键词 quasi-free-standingmonolayer graphene hydrogen intercalation carrier mobility scanning tunnelingmicroscopy scanning tunnelingspectroscop^atomic force microscop3~density functional theory
原文传递
Alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
10
《Science Foundation in China》 CAS 2017年第3期12-12,共1页
Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and H... Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of 展开更多
关键词 Alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
原文传递
CuS/RGO hybrid by one-pot hydrothermal method for efficient electrochemical sensing of hydrogen peroxide 被引量:1
11
作者 Wei Liu Chaojun Lei +8 位作者 Hongxiu Zhang Xiaolin Wu Qing Jia Denghong He Bin Yang Zhongjian Li Yang Hou Lecheng Lei Xingwang Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第6期1306-1311,共6页
In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and su... In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors. 展开更多
关键词 CuS nanoparticles Reduced graphene oxide Non-enzymatic sensor Hydrogen peroxide Electrochemical catalyst
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部