Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions.A new avenue for understanding the dynamic behavior of atomic migration in which hydroge...Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions.A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word"hydrogen spillover."However,there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect.Currently,the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect.The understanding of material fabrication for hydrogen spillover effect has erupted.Considering these factors,we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication.All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance.In addition,we have attempted to elucidate the spillover paths through the utilization of DFT calculations.Furthermore,we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.展开更多
In the selective hydrogenation of diene (or alkyne) using heterogenized homogeneous catalyst, the high selectivity of monoene formation only appears in a very short time interval. The addition of suitable electron don...In the selective hydrogenation of diene (or alkyne) using heterogenized homogeneous catalyst, the high selectivity of monoene formation only appears in a very short time interval. The addition of suitable electron donors can decrease or even cease the monoene hydrogenation and thereby keep the high monoene selectivity after reaching its maximum.展开更多
The effects of hydrogen atoms on behaviour of low cycle fatigue of 2.25Cr-1Mo steel have been investigated in present work. The results indicate that the cyclic softening rate and low cycle fatigue life are respective...The effects of hydrogen atoms on behaviour of low cycle fatigue of 2.25Cr-1Mo steel have been investigated in present work. The results indicate that the cyclic softening rate and low cycle fatigue life are respectively increased and reduced remarkably by hydrogen atoms. In addition, hydrogen atoms make the original stress amplitude of low cycle fatigue increase, which is because of the drag effect of hydrogen atoms on the moving dislocations. Analyses using electron microscopy show that hydrogen atoms accelerate crack initiation of low cycle fatigue from inclusion and transfer the source of low cycle fatigue crack from the surface of specimen to the inclusion, which results in the marked decrease of low cycle fatigue life. The increase of cyclic softening rate for hydrogen charged specimen is due to hydrogen atoms accelerating the initiating and growing of microvoids from the secondary phase particles in the steel. The reducing of the drag effect of hydrogen atoms on moving dislocations is also helpful to the increase of the cyclic softening rate.展开更多
Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of...Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.展开更多
The development of reliable fusion energy is one of the most important challenges in this century.The accelerated degradation of structural materials in fusion reactors caused by neutron irradiation would cause severe...The development of reliable fusion energy is one of the most important challenges in this century.The accelerated degradation of structural materials in fusion reactors caused by neutron irradiation would cause severe problems.Due to the lack of suitable fusion neutron testing facilities,we have to rely on ion irradiation experiments to test candidate materials in fusion reactors.Moreover,fusion neutron irradiation effects are accompanied by the simultaneous transmutation production of helium and hydrogen.One important method to study the He-H synergistic effects in materials is multiple simultaneous ion beams(MSIB)irradiation that has been studied for decades.To date,there is no convincing conclusion on these He-H synergistic effects among these experiments.Recently,a multiple ion beam in-situ transmission electron microscopy(TEM)analysis facility was developed in Xiamen University(XIAMEN facility),which is the first triple beam system and the only in-running in-situ irradiation facility with TEM in China.In this work,we conducted the first high-temperature triple simultaneous ion beams irradiation experiment with TEM observation using the XIAMEN facility.The responses to in-situ triple-ion beams irradiation in austenitic steel 304L SS and ferritic/martensitic steel CLF-1 were studied and compared with the results in dual-and single-ion beam(s)irradiated steels.Synergistic effects were observed in MSIB irradiated steels.Helium was found to be critical for cavity formation,while hydrogen has strong synergistic effect on increasing swelling.展开更多
The areal distribution of some elements in the rare earth bearing spheroidal phases in pure aluminium and Al-Mn alloys was studied by SIMS(secondary ion mass spectrometry).The results show that cerium,iron. silicon an...The areal distribution of some elements in the rare earth bearing spheroidal phases in pure aluminium and Al-Mn alloys was studied by SIMS(secondary ion mass spectrometry).The results show that cerium,iron. silicon and hydrogen are significantly segregated in the phases.Thus the existence of hydrogen-rich rare earth bearing eompounds is confirmed.It indicates that the rare earths have a hydrogen fixation effect in aluminium and aluminium alloys.展开更多
Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4...Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.展开更多
Substantial defects are produced in Al2O3 by 4 MeV Au ion irradiation with a fluence of 4.4×10^15 cm^-2. Ruther- ford baekscattering spectrometry/channeling and cross-sectional transmission electron microscopy me...Substantial defects are produced in Al2O3 by 4 MeV Au ion irradiation with a fluence of 4.4×10^15 cm^-2. Ruther- ford baekscattering spectrometry/channeling and cross-sectional transmission electron microscopy methods are used to investigate the irradiation damage. The 190keV H ions with a fuence of 1×10^17 cm^-2 are used for implanting pristine and Au ion irradiated Al2O3 to explore the irradiation damage effects on the hydrogen retention in Al2O3. The time-of-flight secondary ion mass spectrometry method is used to obtaJn the single hydrogen depth profile and ions mass spectra (IMS), in which we find that implanted hydrogens interacted with defects produced by Au ion irradiation. In IMS, we also obtain the hydrogen retention at a certain depth. Comparing the hydrogen retention in different Al2O3 samples, it is concluded that the irradiation damage improves the tritium permeation resistance property of Al2O3 under given conditions. This result means that Al2O3 may strengthen its property of reduc/ng tritium permeation under the harsh irradiation environment in fusion reactors.展开更多
The effect of cathodic hydrogen charging on the tensile and constant load properties was deter- mined for an austenitic stainless steel weldment comprising a 304L steel in the solution treated condition as a base meta...The effect of cathodic hydrogen charging on the tensile and constant load properties was deter- mined for an austenitic stainless steel weldment comprising a 304L steel in the solution treated condition as a base metal and a 308L filler steel as a weld metal. Part of the 304L solution treated steel was separately given additional sensitization treatment to simulate the microstructure that would develop in the heat affected zone. Tests were performed at room temperature on notched round bar specimens. Hydrogen charging resulted in a pronounced embrittlement of the tested materials. This was manifested mainly as a considerable loss in the ductility of tensile specimens and a decrease in the time to failure and threshold stress of constant load specimens. The 308L weld metal exhibited the highest, and the 304L solution treated steel the lowest, resistance to hydrogen embrittlement. Hydrogen embrittlement was associated with the formation of strain induced martensite as well as a transition from brittle to ductile fracture morphology onwards the centre of the specimens.展开更多
Studies of direction of photoisomerization of retinal,retinonitrile,a- retinonitrile and a trienenitrile analog in different solvents with varying wave- lengths of excitation and reaction temperature led to the conclu...Studies of direction of photoisomerization of retinal,retinonitrile,a- retinonitrile and a trienenitrile analog in different solvents with varying wave- lengths of excitation and reaction temperature led to the conclusion that the well known solvent dependent photochemistry of retinoids is due to selective excitation of the hydrogen bonded species.展开更多
In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conv...In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.展开更多
The slow tensile tests,dynamic hydrogen charging tensile tests and hydrogen evolution tests after hydrogen charging were used to study the effects of rare earth metal(REM)on hydrogen behaviour in a steel 16Mn(St.52).T...The slow tensile tests,dynamic hydrogen charging tensile tests and hydrogen evolution tests after hydrogen charging were used to study the effects of rare earth metal(REM)on hydrogen behaviour in a steel 16Mn(St.52).The ratios of RE/S were chosen as 0,0.7,2.2 and 7.7,respectively.It was shown that the steel with RE/S = 2.2 give a lower hydrogen embrittlement susceptibility than others.The steels without REM can adsorb much more amount of hydrogen than that with REM under the same hydrogen charging conditions.And the amount of adsorbed hydrogen for the foriner can be evolved easier than that for the latter at room temperature,50℃ and 80℃,respectively.The experimental results were explained by the trap theory of hydrogen,the short-circuit diffusion paths in the interfaces between the elongated MnS inclusions and the matrix,and strong ability of REM to adsorb hydrogen.展开更多
Objectives To evaluate the effect of hydrogen sulfide(H2S) postconditioning on myocardial ischemia-reperfusion (I/R) by pressure-volume loop(P-V loop). Methods The I/R model of rat in vivo was established by ligating ...Objectives To evaluate the effect of hydrogen sulfide(H2S) postconditioning on myocardial ischemia-reperfusion (I/R) by pressure-volume loop(P-V loop). Methods The I/R model of rat in vivo was established by ligating the left anterior descending coronary artery for 30min and reperfusing for 120 min.Wistar rats(n=32) were ran- domly divided into 4 groups;Sham operation,ischemia-reperfusion (I/R),Ischemic postconditioning(IPO) and H2S postconditioning.In sham operation,there was no ligation.In IPO,at the start of reperfusion,three cycles of 30s reperfusion and 30s LAD reocclusion preceded the 3h of reperfusion. In H2S postconditioning,NaHS(15μmol/kg,Sodium hydrosulfide)was administrated before coronary artery reperfusion. The heart rate(HR),I/R arrhythmia,the left ventricular end-systolic pressure(LVESP),left ventricular enddiastolic pressure(LVEDP),the slope of the end- systolic P-V relation(ESPVR) and the slope of the end-diastolic P-V relation(EDPVR) were detected.Infarct size was determined by scanning the images of the rat heart ventricular sections stained with Evans blue and TTC.Results Compared with I/R group,the I/R arrhythmia and the infarct size were decreased significantly(PPP2S postconditioning group.Conclusions Myocardial I/R injury was decreased by H2S post-conditioning, and it was sensitive and accurate to evaluate the heart function by P-V loop.展开更多
Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are ...Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are characterized systematically by field-emission scanning electron microscope, x-ray diffraction, Raman spectra, nanoindentation and scratch. It is shown that optimal Cr metal forms nanocrystalline carbide to improve the hardness, toughness and adhesion strength in the amorphous carbon matrix, which possesses relatively higher nano-hardness of 15. 7 CPa, elastic modulus of 126.8 GPa and best adhesion strength with critical load (Lc) of 36 N for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm. The friction and wear behaviors of as-deposited Cr/a-C:H films are evaluated under both the ambient air and deionized water conditions. The results reveal that it can achieve superior low friction and anti-wear performance for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm under the ambient air condition, and the friction coetllcient and wear rate tested in deionized water condition are relatively lower compared with those tested under the ambient air condition for each film. Superior combination of mechanical and tribological properties for the Cr/a-C:H film should be a good candidate for engineering applications.展开更多
By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide)(PNIPAM) brushes in sodium halide solutions. After considering PNIPAM–water hydrogen bonds, water...By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide)(PNIPAM) brushes in sodium halide solutions. After considering PNIPAM–water hydrogen bonds, water–anion hydrogen bonds, and PNIPAM–anion bonds and their explicit coupling to the PNIPAM conformations, we find that increasing temperature lowers the solubility of PNIPAM, and results in a collapse of the layer at high enough temperatures. The combination of the three types of bonds would yield a decrease in the solubility of PNIPAM following the Hofmeister series: Na Cl>Na Br>Na I. PNIPAM–water hydrogen bonds are affected by water–anion hydrogen bonds and PNIPAM–anion bonds. The coupling of polymer conformations and the competition among the three types of bonds are essential for describing correctly a decrease in the solubility of PNIPAM brushes, which is determined by the free energy associated with the formation of the three types of bonds. Our results agree well with the experimental observations, and would be very important for understanding the shift of the lower critical solution temperature of PNIPAM brushes following the Hofmeister series.展开更多
The adenine-thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydroge...The adenine-thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311 ++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 〈 HN61 〈 HN62 〈 H2 〈 H8.展开更多
To develop graphene-based nanomaterials as reliable catalysts for electrochemical energy conversion and storage systems(e.g.PEM fuel cells,metal–air batteries,etc.),it is imperative to critically understand their per...To develop graphene-based nanomaterials as reliable catalysts for electrochemical energy conversion and storage systems(e.g.PEM fuel cells,metal–air batteries,etc.),it is imperative to critically understand their performance changes and correlated material degradation processes under different operational conditions.In these systems,hydrogen peroxide(H_(2)O_(2))is often an inevitable byproduct of the catalytic oxygen reduction reaction,which can be detrimental to the catalysts,electrodes,and electrolyte materials.Here,we studied how the electrocatalytic performance changes for a heterogeneous nanocatalyst named nitrogen-doped graphene integrated with a metal–organic framework(N-G/MOF)by the effect of H_(2)O_(2),and correlated the degradation process of the catalyst in terms of the changes in elemental compositions,chemical bonds,crystal structures,and morphology.The catalyst samples were treated with five different concentrations of H_(2)O_(2) to emulate the operational conditions and examined to quantify the changes in electrocatalytic performances in an alkaline medium,elemental composition and chemical bonds,crystal structure,and morphology.The electrocatalytic performance considerably declined as the H_(2)O_(2) concentration reached above 0.1 M.The XPS analyses suggest the formation of different oxygen functional groups on the material surface,the breakdown of the material's C–C bonds,and a sharp decline in pyridinic-N functional groups due to gradually harsher H_(2)O_(2) treatments.In higher concentrations,the H_(2)O_(2)-derived radicals altered the crystalline and morphological features of the catalyst.展开更多
Aqueous rechargeable Li/Na-ion batteries have shown promise for sustainable large-scale energy storage due to their safety,low cost,and environmental benignity.However,practical applications of aqueous batteries are p...Aqueous rechargeable Li/Na-ion batteries have shown promise for sustainable large-scale energy storage due to their safety,low cost,and environmental benignity.However,practical applications of aqueous batteries are plagued by water's intrinsically narrow electrochemical stability window,which results in low energy density.In this perspective article,we review several strategies to broaden the electrochemical window of aqueous electrolytes and realize high-energy aqueous batteries.Specifically,we highlight our recent findings on stabilizing aqueous Li storage electrochemistry using a deuterium dioxide-based aqueous electrolyte,which shows significant hydrogen isotope effects that trigger a wider electrochemical window and inhibit detrimental parasitic processes.展开更多
A new EPR center having C2v symmetry and S=1, labeled as Si-PK3, has been observed for the first time in neutron-irradiated FZ-silicon. The spectra start to appear after 150℃ annealing and disappear at 500℃. The pri...A new EPR center having C2v symmetry and S=1, labeled as Si-PK3, has been observed for the first time in neutron-irradiated FZ-silicon. The spectra start to appear after 150℃ annealing and disappear at 500℃. The principal values of tensor g and D are determined. The microscopic model is proposed to be a trivacancy chain along the 〈110〉-direction with an oxygen atom situated in the middle. The annealing temperature of si-PK3 in hydrogencontaining samples is at least by 150℃ lower than that of other samples.展开更多
LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)Hxalloys were prepared by hydrogenation.Samples were annealed at 1343Kfor30-90 hto form the NaZn13 phase.La-rich andα-Fe secondary phases were also detected.Saturated hydr...LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)Hxalloys were prepared by hydrogenation.Samples were annealed at 1343Kfor30-90 hto form the NaZn13 phase.La-rich andα-Fe secondary phases were also detected.Saturated hydrogenation at 553 Kand 0.15 MPa of H_2 pressure for 5hwas employed to improve the Curie temperature of the alloys to 279 K.The maximum magnetic entropy change,relative cooling power,and adiabatic temperature change of LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x annealed at 1343 Kfor 90hafter hydrogen absorption are 6.38J/(kg·K)(magnetic changesμ0ΔH =1.65T),100.1J/kg(μ0ΔH =1.65T),and 2.2 K(μ0ΔH =1.48T),respectively.Although the maximum magnetic entropy change of the LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x alloys is lower than those of similar alloys with high purity raw materials,the relative cooling power is nearly the same.The effect of impurities of the raw materials used was also discussed.It is assumed that the impurity of 0.2wt.% Al is responsible for the reduced entropy change of the resulted alloys.The LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x alloys prepared by this method could be a low cost alternative material for room temperature magnetic cooling applications.展开更多
基金supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(Grant Nos.RS-2023-00284361 and 2021R1A2C2091497)supported by the Nano&Materials Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(RS-2024-00436563)
文摘Hydrogen spillover effect has recently garnered a lot of attention in the field of electrocatalytic hydrogen evolution reactions.A new avenue for understanding the dynamic behavior of atomic migration in which hydrogen atoms moving on a catalyst surface was opened up by the setup of the word"hydrogen spillover."However,there is currently a dearth of thorough knowledge regarding the hydrogen spillover effect.Currently,the advancement of sophisticated characterization procedures offers progressively useful information to enhance our grasp of the hydrogen spillover effect.The understanding of material fabrication for hydrogen spillover effect has erupted.Considering these factors,we made an effort to review most of the articles published on the hydrogen spillover effect and carefully analyzed the aspect of material fabrication.All of our attention has been directed toward the molecular pathway that leads to improve hydrogen evolution reactions performance.In addition,we have attempted to elucidate the spillover paths through the utilization of DFT calculations.Furthermore,we provide some preliminary research suggestions and highlight the opportunities and obstacles that are still to be confronted in this study area.
文摘In the selective hydrogenation of diene (or alkyne) using heterogenized homogeneous catalyst, the high selectivity of monoene formation only appears in a very short time interval. The addition of suitable electron donors can decrease or even cease the monoene hydrogenation and thereby keep the high monoene selectivity after reaching its maximum.
文摘The effects of hydrogen atoms on behaviour of low cycle fatigue of 2.25Cr-1Mo steel have been investigated in present work. The results indicate that the cyclic softening rate and low cycle fatigue life are respectively increased and reduced remarkably by hydrogen atoms. In addition, hydrogen atoms make the original stress amplitude of low cycle fatigue increase, which is because of the drag effect of hydrogen atoms on the moving dislocations. Analyses using electron microscopy show that hydrogen atoms accelerate crack initiation of low cycle fatigue from inclusion and transfer the source of low cycle fatigue crack from the surface of specimen to the inclusion, which results in the marked decrease of low cycle fatigue life. The increase of cyclic softening rate for hydrogen charged specimen is due to hydrogen atoms accelerating the initiating and growing of microvoids from the secondary phase particles in the steel. The reducing of the drag effect of hydrogen atoms on moving dislocations is also helpful to the increase of the cyclic softening rate.
基金the National Natural Science Foundation of China(NSFC)(Grant No.12074126)the Foundation for Innovative Research Groups of NSFC(Grant No.51621001)the Fundamental Research Funds for the Central Universities(Grant No.2020ZYGXZR076).
文摘Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.
基金Project supported by the National Natural Science Foundation of China(Grant No.11935004).
文摘The development of reliable fusion energy is one of the most important challenges in this century.The accelerated degradation of structural materials in fusion reactors caused by neutron irradiation would cause severe problems.Due to the lack of suitable fusion neutron testing facilities,we have to rely on ion irradiation experiments to test candidate materials in fusion reactors.Moreover,fusion neutron irradiation effects are accompanied by the simultaneous transmutation production of helium and hydrogen.One important method to study the He-H synergistic effects in materials is multiple simultaneous ion beams(MSIB)irradiation that has been studied for decades.To date,there is no convincing conclusion on these He-H synergistic effects among these experiments.Recently,a multiple ion beam in-situ transmission electron microscopy(TEM)analysis facility was developed in Xiamen University(XIAMEN facility),which is the first triple beam system and the only in-running in-situ irradiation facility with TEM in China.In this work,we conducted the first high-temperature triple simultaneous ion beams irradiation experiment with TEM observation using the XIAMEN facility.The responses to in-situ triple-ion beams irradiation in austenitic steel 304L SS and ferritic/martensitic steel CLF-1 were studied and compared with the results in dual-and single-ion beam(s)irradiated steels.Synergistic effects were observed in MSIB irradiated steels.Helium was found to be critical for cavity formation,while hydrogen has strong synergistic effect on increasing swelling.
文摘The areal distribution of some elements in the rare earth bearing spheroidal phases in pure aluminium and Al-Mn alloys was studied by SIMS(secondary ion mass spectrometry).The results show that cerium,iron. silicon and hydrogen are significantly segregated in the phases.Thus the existence of hydrogen-rich rare earth bearing eompounds is confirmed.It indicates that the rare earths have a hydrogen fixation effect in aluminium and aluminium alloys.
文摘Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91426304 and 91226202the National Magnetic Confinement Fusion Energy Research Project under Grant No 2015GB113000
文摘Substantial defects are produced in Al2O3 by 4 MeV Au ion irradiation with a fluence of 4.4×10^15 cm^-2. Ruther- ford baekscattering spectrometry/channeling and cross-sectional transmission electron microscopy methods are used to investigate the irradiation damage. The 190keV H ions with a fuence of 1×10^17 cm^-2 are used for implanting pristine and Au ion irradiated Al2O3 to explore the irradiation damage effects on the hydrogen retention in Al2O3. The time-of-flight secondary ion mass spectrometry method is used to obtaJn the single hydrogen depth profile and ions mass spectra (IMS), in which we find that implanted hydrogens interacted with defects produced by Au ion irradiation. In IMS, we also obtain the hydrogen retention at a certain depth. Comparing the hydrogen retention in different Al2O3 samples, it is concluded that the irradiation damage improves the tritium permeation resistance property of Al2O3 under given conditions. This result means that Al2O3 may strengthen its property of reduc/ng tritium permeation under the harsh irradiation environment in fusion reactors.
文摘The effect of cathodic hydrogen charging on the tensile and constant load properties was deter- mined for an austenitic stainless steel weldment comprising a 304L steel in the solution treated condition as a base metal and a 308L filler steel as a weld metal. Part of the 304L solution treated steel was separately given additional sensitization treatment to simulate the microstructure that would develop in the heat affected zone. Tests were performed at room temperature on notched round bar specimens. Hydrogen charging resulted in a pronounced embrittlement of the tested materials. This was manifested mainly as a considerable loss in the ductility of tensile specimens and a decrease in the time to failure and threshold stress of constant load specimens. The 308L weld metal exhibited the highest, and the 304L solution treated steel the lowest, resistance to hydrogen embrittlement. Hydrogen embrittlement was associated with the formation of strain induced martensite as well as a transition from brittle to ductile fracture morphology onwards the centre of the specimens.
文摘Studies of direction of photoisomerization of retinal,retinonitrile,a- retinonitrile and a trienenitrile analog in different solvents with varying wave- lengths of excitation and reaction temperature led to the conclusion that the well known solvent dependent photochemistry of retinoids is due to selective excitation of the hydrogen bonded species.
文摘In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.
文摘The slow tensile tests,dynamic hydrogen charging tensile tests and hydrogen evolution tests after hydrogen charging were used to study the effects of rare earth metal(REM)on hydrogen behaviour in a steel 16Mn(St.52).The ratios of RE/S were chosen as 0,0.7,2.2 and 7.7,respectively.It was shown that the steel with RE/S = 2.2 give a lower hydrogen embrittlement susceptibility than others.The steels without REM can adsorb much more amount of hydrogen than that with REM under the same hydrogen charging conditions.And the amount of adsorbed hydrogen for the foriner can be evolved easier than that for the latter at room temperature,50℃ and 80℃,respectively.The experimental results were explained by the trap theory of hydrogen,the short-circuit diffusion paths in the interfaces between the elongated MnS inclusions and the matrix,and strong ability of REM to adsorb hydrogen.
文摘Objectives To evaluate the effect of hydrogen sulfide(H2S) postconditioning on myocardial ischemia-reperfusion (I/R) by pressure-volume loop(P-V loop). Methods The I/R model of rat in vivo was established by ligating the left anterior descending coronary artery for 30min and reperfusing for 120 min.Wistar rats(n=32) were ran- domly divided into 4 groups;Sham operation,ischemia-reperfusion (I/R),Ischemic postconditioning(IPO) and H2S postconditioning.In sham operation,there was no ligation.In IPO,at the start of reperfusion,three cycles of 30s reperfusion and 30s LAD reocclusion preceded the 3h of reperfusion. In H2S postconditioning,NaHS(15μmol/kg,Sodium hydrosulfide)was administrated before coronary artery reperfusion. The heart rate(HR),I/R arrhythmia,the left ventricular end-systolic pressure(LVESP),left ventricular enddiastolic pressure(LVEDP),the slope of the end- systolic P-V relation(ESPVR) and the slope of the end-diastolic P-V relation(EDPVR) were detected.Infarct size was determined by scanning the images of the rat heart ventricular sections stained with Evans blue and TTC.Results Compared with I/R group,the I/R arrhythmia and the infarct size were decreased significantly(PPP2S postconditioning group.Conclusions Myocardial I/R injury was decreased by H2S post-conditioning, and it was sensitive and accurate to evaluate the heart function by P-V loop.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51302116 and 51365016the Open Fund Item of State Key Laboratory of Solid Lubrication of Lanzhou Institute of Chemical Physics of Chinese Academy of Sciences under Grant No LSL-1203
文摘Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are characterized systematically by field-emission scanning electron microscope, x-ray diffraction, Raman spectra, nanoindentation and scratch. It is shown that optimal Cr metal forms nanocrystalline carbide to improve the hardness, toughness and adhesion strength in the amorphous carbon matrix, which possesses relatively higher nano-hardness of 15. 7 CPa, elastic modulus of 126.8 GPa and best adhesion strength with critical load (Lc) of 36 N for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm. The friction and wear behaviors of as-deposited Cr/a-C:H films are evaluated under both the ambient air and deionized water conditions. The results reveal that it can achieve superior low friction and anti-wear performance for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm under the ambient air condition, and the friction coetllcient and wear rate tested in deionized water condition are relatively lower compared with those tested under the ambient air condition for each film. Superior combination of mechanical and tribological properties for the Cr/a-C:H film should be a good candidate for engineering applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21264016,11464047,and 21364016)the Joint Funds of Xinjiang Natural Science Foundation,China(Grant No.2015211C298)
文摘By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide)(PNIPAM) brushes in sodium halide solutions. After considering PNIPAM–water hydrogen bonds, water–anion hydrogen bonds, and PNIPAM–anion bonds and their explicit coupling to the PNIPAM conformations, we find that increasing temperature lowers the solubility of PNIPAM, and results in a collapse of the layer at high enough temperatures. The combination of the three types of bonds would yield a decrease in the solubility of PNIPAM following the Hofmeister series: Na Cl>Na Br>Na I. PNIPAM–water hydrogen bonds are affected by water–anion hydrogen bonds and PNIPAM–anion bonds. The coupling of polymer conformations and the competition among the three types of bonds are essential for describing correctly a decrease in the solubility of PNIPAM brushes, which is determined by the free energy associated with the formation of the three types of bonds. Our results agree well with the experimental observations, and would be very important for understanding the shift of the lower critical solution temperature of PNIPAM brushes following the Hofmeister series.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11025524 and 11161130520)the National Basic Research Program of China (Grant No.2010CB832903)+2 种基金the Natural Science Foundation of Guizhou Province of China (Grant No.J20122141)the Fund in the framework of a Frontier of Novelty Program of the Chinese Academy of Sciences for one of the authors (Wang Dong-Qi) (Grant No.Y1515540U1)the Research Fund for the Doctoral Program of Jiangxi Science and Technology Normal University (Grant No.3000990110)
文摘The adenine-thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311 ++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 〈 HN61 〈 HN62 〈 H2 〈 H8.
文摘To develop graphene-based nanomaterials as reliable catalysts for electrochemical energy conversion and storage systems(e.g.PEM fuel cells,metal–air batteries,etc.),it is imperative to critically understand their performance changes and correlated material degradation processes under different operational conditions.In these systems,hydrogen peroxide(H_(2)O_(2))is often an inevitable byproduct of the catalytic oxygen reduction reaction,which can be detrimental to the catalysts,electrodes,and electrolyte materials.Here,we studied how the electrocatalytic performance changes for a heterogeneous nanocatalyst named nitrogen-doped graphene integrated with a metal–organic framework(N-G/MOF)by the effect of H_(2)O_(2),and correlated the degradation process of the catalyst in terms of the changes in elemental compositions,chemical bonds,crystal structures,and morphology.The catalyst samples were treated with five different concentrations of H_(2)O_(2) to emulate the operational conditions and examined to quantify the changes in electrocatalytic performances in an alkaline medium,elemental composition and chemical bonds,crystal structure,and morphology.The electrocatalytic performance considerably declined as the H_(2)O_(2) concentration reached above 0.1 M.The XPS analyses suggest the formation of different oxygen functional groups on the material surface,the breakdown of the material's C–C bonds,and a sharp decline in pyridinic-N functional groups due to gradually harsher H_(2)O_(2) treatments.In higher concentrations,the H_(2)O_(2)-derived radicals altered the crystalline and morphological features of the catalyst.
基金This work was supported by the National Key R&D Program of China(Grant No 2019YFA0705602)the Basic Science Center Project of National Natural Science Foundation of China(Grant No.51788104)+2 种基金the CAS Project for Young Scientists in Basic Research(Grant YSBR-058)the National Natural Science Foundation of China(Grant Nos.21975266,52172252 and 22209188)the Beijing Natural Science Foundation(Grant No.JQ22005).
文摘Aqueous rechargeable Li/Na-ion batteries have shown promise for sustainable large-scale energy storage due to their safety,low cost,and environmental benignity.However,practical applications of aqueous batteries are plagued by water's intrinsically narrow electrochemical stability window,which results in low energy density.In this perspective article,we review several strategies to broaden the electrochemical window of aqueous electrolytes and realize high-energy aqueous batteries.Specifically,we highlight our recent findings on stabilizing aqueous Li storage electrochemistry using a deuterium dioxide-based aqueous electrolyte,which shows significant hydrogen isotope effects that trigger a wider electrochemical window and inhibit detrimental parasitic processes.
基金Project supported by the National Natural Science Foundation of China.
文摘A new EPR center having C2v symmetry and S=1, labeled as Si-PK3, has been observed for the first time in neutron-irradiated FZ-silicon. The spectra start to appear after 150℃ annealing and disappear at 500℃. The principal values of tensor g and D are determined. The microscopic model is proposed to be a trivacancy chain along the 〈110〉-direction with an oxygen atom situated in the middle. The annealing temperature of si-PK3 in hydrogencontaining samples is at least by 150℃ lower than that of other samples.
基金financially supported by Inner Mongolia Natural Science Foundation of China(2013MS0802)
文摘LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)Hxalloys were prepared by hydrogenation.Samples were annealed at 1343Kfor30-90 hto form the NaZn13 phase.La-rich andα-Fe secondary phases were also detected.Saturated hydrogenation at 553 Kand 0.15 MPa of H_2 pressure for 5hwas employed to improve the Curie temperature of the alloys to 279 K.The maximum magnetic entropy change,relative cooling power,and adiabatic temperature change of LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x annealed at 1343 Kfor 90hafter hydrogen absorption are 6.38J/(kg·K)(magnetic changesμ0ΔH =1.65T),100.1J/kg(μ0ΔH =1.65T),and 2.2 K(μ0ΔH =1.48T),respectively.Although the maximum magnetic entropy change of the LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x alloys is lower than those of similar alloys with high purity raw materials,the relative cooling power is nearly the same.The effect of impurities of the raw materials used was also discussed.It is assumed that the impurity of 0.2wt.% Al is responsible for the reduced entropy change of the resulted alloys.The LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x alloys prepared by this method could be a low cost alternative material for room temperature magnetic cooling applications.