Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward ba...Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward back propagation neural network (BPNN) is the widely used network topology for forecasting stock prices indices. In this study, we attempted to find the best network topology for one step ahead forecasting of All Share Price Index (ASPI), Colombo Stock Exchange (CSE) by employing feed forward BPNN. The daily data including ASPI, All Share Total Return Index (ASTRI), Market Price Earnings Ratio (PER), and Market Price to Book Value (PBV) were collected from CSE over the period from January 2nd 2012 to March 20th 2014. The experiment is implemented by prioritizing the number of inputs, learning rate, number of hidden layer neurons, and the number of training sessions. Eight models were selected on basis of input data and the number of training sessions. Then the best model was used for forecasting next trading day ASPI value. Empirical result reveals that the proposed model can be used as an approximation method to obtain next day value. In addition, it showed that the number of inputs, number of hidden layer neurons and the training times are significant factors that can be affected to the accuracy of forecast value.展开更多
Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was iden...Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was identified using back-propagation (BP) artificial neural networks (ANN). The study is based on an indoor urban water supply model experiment. The key to appling BP ANN is to optimize the ANN's topological structure and learning parameters. This paper presents the optimizing method for a 3-layer BP neural network's topological structure and its learning parameters-learning ratio and the momentum factor. The indoor water supply pipeline model experimental results show that BP ANNs can be used to locate the burst point in urban water supply systems. The topological structure and learning parameters were optimized using the experimental results.展开更多
With the continuous deepening of Artificial Neural Network(ANN)research,ANN model structure and function are improving towards diversification and intelligence.However,the model is more evaluated from the pros and con...With the continuous deepening of Artificial Neural Network(ANN)research,ANN model structure and function are improving towards diversification and intelligence.However,the model is more evaluated from the pros and cons of the problem-solving results and the lack of evaluation from the biomimetic aspect of imitating neural networks is not inclusive enough.Hence,a new ANN models evaluation strategy is proposed from the perspective of bionics in response to this problem in the paper.Firstly,four classical neural network models are illustrated:Back Propagation(BP)network,Deep Belief Network(DBN),LeNet5 network,and olfactory bionic model(KIII model),and the neuron transmission mode and equation,network structure,and weight updating principle of the models are analyzed qualitatively.The analysis results show that the KIII model comes closer to the actual biological nervous system compared with other models,and the LeNet5 network simulates the nervous system in depth.Secondly,evaluation indexes of ANN are constructed from the perspective of bionics in this paper:small-world,synchronous,and chaotic characteristics.Finally,the network model is quantitatively analyzed by evaluation indexes from the perspective of bionics.The experimental results show that the DBN network,LeNet5 network,and BP network have synchronous characteristics.And the DBN network and LeNet5 network have certain chaotic characteristics,but there is still a certain distance between the three classical neural networks and actual biological neural networks.The KIII model has certain small-world characteristics in structure,and its network also exhibits synchronization characteristics and chaotic characteristics.Compared with the DBN network,LeNet5 network,and the BP network,the KIII model is closer to the real biological neural network.展开更多
文摘Use of artificial neural networks has become a significant and an emerging research method due to its capability of capturing nonlinear behavior instead of conventional time series methods. Among them, feed forward back propagation neural network (BPNN) is the widely used network topology for forecasting stock prices indices. In this study, we attempted to find the best network topology for one step ahead forecasting of All Share Price Index (ASPI), Colombo Stock Exchange (CSE) by employing feed forward BPNN. The daily data including ASPI, All Share Total Return Index (ASTRI), Market Price Earnings Ratio (PER), and Market Price to Book Value (PBV) were collected from CSE over the period from January 2nd 2012 to March 20th 2014. The experiment is implemented by prioritizing the number of inputs, learning rate, number of hidden layer neurons, and the number of training sessions. Eight models were selected on basis of input data and the number of training sessions. Then the best model was used for forecasting next trading day ASPI value. Empirical result reveals that the proposed model can be used as an approximation method to obtain next day value. In addition, it showed that the number of inputs, number of hidden layer neurons and the training times are significant factors that can be affected to the accuracy of forecast value.
文摘Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was identified using back-propagation (BP) artificial neural networks (ANN). The study is based on an indoor urban water supply model experiment. The key to appling BP ANN is to optimize the ANN's topological structure and learning parameters. This paper presents the optimizing method for a 3-layer BP neural network's topological structure and its learning parameters-learning ratio and the momentum factor. The indoor water supply pipeline model experimental results show that BP ANNs can be used to locate the burst point in urban water supply systems. The topological structure and learning parameters were optimized using the experimental results.
基金supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology(No.ICT2021B10)the Natural Science Foundation of Hunan Province(2021JJ30456)+2 种基金the Open Fund of Science and Technology on Parallel and Distributed Processing Laboratory(WDZC20205500119)the Hunan Provincial Science and Technology Department High-tech Industry Science and Technology Innovation Leading Project(2020GK2009)the Scientific and Technological Progress and Innovation Program of the Transportation Department of Hunan Province(201927),etc.
文摘With the continuous deepening of Artificial Neural Network(ANN)research,ANN model structure and function are improving towards diversification and intelligence.However,the model is more evaluated from the pros and cons of the problem-solving results and the lack of evaluation from the biomimetic aspect of imitating neural networks is not inclusive enough.Hence,a new ANN models evaluation strategy is proposed from the perspective of bionics in response to this problem in the paper.Firstly,four classical neural network models are illustrated:Back Propagation(BP)network,Deep Belief Network(DBN),LeNet5 network,and olfactory bionic model(KIII model),and the neuron transmission mode and equation,network structure,and weight updating principle of the models are analyzed qualitatively.The analysis results show that the KIII model comes closer to the actual biological nervous system compared with other models,and the LeNet5 network simulates the nervous system in depth.Secondly,evaluation indexes of ANN are constructed from the perspective of bionics in this paper:small-world,synchronous,and chaotic characteristics.Finally,the network model is quantitatively analyzed by evaluation indexes from the perspective of bionics.The experimental results show that the DBN network,LeNet5 network,and BP network have synchronous characteristics.And the DBN network and LeNet5 network have certain chaotic characteristics,but there is still a certain distance between the three classical neural networks and actual biological neural networks.The KIII model has certain small-world characteristics in structure,and its network also exhibits synchronization characteristics and chaotic characteristics.Compared with the DBN network,LeNet5 network,and the BP network,the KIII model is closer to the real biological neural network.