Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in M...Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region.展开更多
Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study...Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study area,the hydrological simulation was made based on SWAT-GIS integrated model platform.The calculation methods of hydrological process factors using SWAT model were described based on the simulation results of runoff from 1990 to 2000.Hydrological process factors in the study area were analyzed by using GIS technology.The spatial and temporal characteristics of precipitation,runoff,infiltration,evapotranspiration and snowmelt in the basin were calculated and analyzed.展开更多
With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication o...With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.展开更多
Mathematical models of the quantity and quality of water in hydrographic basins enable simulation of a wide variety of processes, including the production of water and sediments, and the dynamics of point and nonpoint...Mathematical models of the quantity and quality of water in hydrographic basins enable simulation of a wide variety of processes, including the production of water and sediments, and the dynamics of point and nonpoint sources of pollution. These models have become increasingly complex, requiring large amounts of input data, which can increase the uncertainty of the results of simulations. For this reason, it is essential to perform calibration and validation procedures. The objective of this work was to conduct sensitivity analysis and calibration of a distributed hydrological model (SWAT) applied to the flows of water in the watershed of the Poxim River. Satisfactory performance of the model was indicated by the values obtained for the Nash-Sutcliffe efficiency coefficient (0.77), the percent bias (5.05), the root mean square error (0.48), and the ratio of the RMSE to the standard deviation of the observations (RSR) (0.49). The set of parameters identified here could be used for the simulation and evaluation of other scenarios.展开更多
Hydrological events should be described through several correlated variables, so multivariate HFA has gained popularity and become an active research field during recent years. However, at present multivariate HFA mai...Hydrological events should be described through several correlated variables, so multivariate HFA has gained popularity and become an active research field during recent years. However, at present multivariate HFA mainly focuses directly on fitting the frequency distribution without confirming whether the assumptions are satisfied. Neglecting testing these assumptions could get severely wrong frequency distribution. This paper uses multivariate Mann-Kendal testing to detect the multivariate trends of annual flood peak and annual maximum 15 day volume for four control hydrological stations in the?Upper Yangtze River Basin. Results indicate that multivariate test could detect the trends of joint variables, whereas univariate tests can only detect the univariate trends. Therefore, it is recommended to jointly apply univariate and multivariate trend tests to capture all the existing trends.展开更多
Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacia...Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacial discharge is partly controlled by the geometry of the glacial drainage network and by the process of producing meltwater. The glacial-drainage system of some alpine glaciers has been characterized using a model based on proglacial discharge analysis. In this paper, we apply cross-correlation analysis to hourly hydro-climatic data collected from China's Hailuogou Glacier, a typical temperate glacier in Mt. Gongga, to study the seasonal status changes of the englacial and subglacial drainage systems by discharge-temperature (Q-T) time lag analy-sis. During early ablation season (April-May) of 2003, 2004 and 2005, the change of englacial and subglacial drainage system usually leads several outburst flood events, which are also substantiated by observing the leakage of supraglacial pond and cre-vasses pond water during field works in April, 2008. At the end of ablation season (October-December), the glacial-drainage net-works become less hydro-efficient. Those events are evidenced by hourly hydro-process near the terminus of Hailuogou Glacier, and the analysis of Q-T time lags also can be a good indicator of those changes. However, more detailed observations or experi-ments, e.g. dye-tracing experiment and recording borehole water level variations, are necessary to describe the evolutionary status and processes of englacial and subglacial drainage systems evolution during ablation season.展开更多
This paper reviews the significant contribution of hydrologic continuity in the development, evolution and fate of the Niger Delta. Formed from the aggregation of sediments from a drainage catchment area of over 2 mil...This paper reviews the significant contribution of hydrologic continuity in the development, evolution and fate of the Niger Delta. Formed from the aggregation of sediments from a drainage catchment area of over 2 million km<sup>2</sup>, the Niger Delta has evolved into a prolific sedimentary basin with a dense network of rivers and creeks. The ecological system is in a fragile state with fresh and saline water ecosystems maintaining a dynamic equilibrium. Rainfall typically varies from 2500 - 4000 mm per year compared to average annual evaporation of about 1500 mm, resulting in net antecedent moisture. Over 70% of the rainfall occurs in 4 months between May and September, creating a potential for flooding. Water level varies from less than 1.5 m in the estuaries to about 8 m at the apex of the delta, with Nun River having a slightly higher elevation compared to Forcados River, implying that canals connecting both rivers at the same reach would experience water movements from Nun to Forcados River. Similarly, water level gradients vary across the stretch of the rivers from 8.6 to 9.5 × 10<sup>-5</sup> (cm/km) between Onitsha and Asamabiri, 7.5 to 7.7 × 10<sup>-5</sup> (cm/km) on the Forcados River downstream of Asamabiri, and from 7.4 to 7.6 × 10<sup>-5</sup> (cm/km) on the Nun River. At peak flood, about 23 × 10<sup>3</sup> m<sup>3</sup>/sec of runoff enters the Niger Delta. At the same time, about 16 × 10<sup>3</sup> m<sup>3</sup>/sec discharges from the estuaries into the ocean in a semi-diurnal tidal flow leaving a surplus that accumulates to cause flooding. The delta thus acts like a sponge, absorbing the shear amount of flow and releasing slowly stored water through at least twenty-one outlet estuaries into the Atlantic Ocean. The shear amount of discharge overwhelms the capacity of the network of distributaries and predisposes the delta to flooding. Assessment of the capacity of the rivers to evacuate pollutants showed that rivers to the west of Brass which are fed by Forcados River exhibited relatively stronger flux efficiencies prior to 1998 but are presently weaker compared to rivers fed by Nun. The rivers to the east between New Calabar and Imo Rivers exhibited very weak ebb tide asymmetry or net upstream flow largely because these rivers receive little or no freshwater influx from upstream sources. Flood and erosion are the major hydrological hazards in the region.展开更多
[ Objective] The research aimed to analyze hydrological regimes of the medium and small rivers in Hami of Xinjiang. [ Method] According to actual observation data at Toudaogou hydrological station during 1956 -2010, c...[ Objective] The research aimed to analyze hydrological regimes of the medium and small rivers in Hami of Xinjiang. [ Method] According to actual observation data at Toudaogou hydrological station during 1956 -2010, climate, runoff, flood, sediment and water quality in the basin were analyzed. [ Result] Runoff in Toudaogou River was mainly from bedrock fissure water and rainfall, and depended on temperature and precipi- tation in the catchment zone. Runoff in Toudaogou River had very big change during the year. Runoff in whole year mainly concentrated during April -June, which occupied 57.9% of annual runoff. Flood in Toudaogou basin was divided into spring and summer flood from time, and snowmelt and rainstorm flood from type. Sediment load was related to terrain, gradient, runoff, precipitation, flood and process. Suspended sediment load at Toudaogou hydrological station had close relationship with the annual maximum flow capacity of flood peak, and related coefficient was 0.917. [ Conclusion] Hydrological regime in Toudaogou basin basically represented corresponding hydrological information of rivers without glacier water supply in Hami even whole western arid zone of China. The research could provide theoretical basis for scientifically using water resources of the medium and small rivers in the zone.展开更多
Remote sensing analysis is an efficient tool for updating geological maps. The regional scale map obtained in this project from compilation of the pre-existing maps and of a number of space images is somewhat more com...Remote sensing analysis is an efficient tool for updating geological maps. The regional scale map obtained in this project from compilation of the pre-existing maps and of a number of space images is somewhat more complete. It takes into account the usual field and laboratory parameters of the rock units, through the previous geologic maps, together with remote sensing parameters such as spectral signatures, textures, roughness, morphology that are observed from optical, microwave and DEM imagery. With more rock characteristics, the old maps are obligatory improved. The Cenozoic faulting in the Al Hamra al Hamadah plateau is largely influenced by the tectonics affecting the Paleozoic oil bearing structures that are hidden by the late Cretaceous-Paleocene layers. The tectonic style is that of reactivation of the Paleozoic faults under effects of the NNE-trending regional tension. Then the faults on the surface of the plateau would indicate location of the hidden Paleozoic faults in depth. A flat plateau, in the arid environment, appears to be a very favorable environment for mapping of gentle folds, faults and tectonic sinkholes. Remote sensing is a fruitful approach in this case study. The gentle anticlines for instance are undetectable in the field, but computer assisted shadowing with a low elevation angle of illumination is the key processing for evidencing these features. Problems of drillings in the area are well known for example to Waha, AGOCO and PB Companies during their exploration activities in the concessions in Ghadames Basin. According to them several incidents of losing drilling Pits have occurred and drilling came into a hole. Because this paper is aimed to know the exact location of sinkholes in the Ghadames basin, I would recommend all the oil companies to review this work and try to trace the sinkholes indicated to minimize the risk of drilling problems.展开更多
The numeral trait of aquiferous zones in flowage studies and estimations is under most parts of nation. In this study Karaj aquiferous zone in Alborz province was surveyed from the view point of form, the agglomeratio...The numeral trait of aquiferous zones in flowage studies and estimations is under most parts of nation. In this study Karaj aquiferous zone in Alborz province was surveyed from the view point of form, the agglomeration of drainage net length of channel and space. The orientation of hillside was specified as the affective factor on creating and streaming the flowage. A flow aggregating hydrological model for the studied zone was prepared and amount of the flow is mostly in which parts of the zone the delay and centralization time in the zone was evaluated and the related diagrams were derived. Finally, the zone was divided into 4 main subzones and their drainage nets were ranked and by 4 factors namely, space, length of canal, drainage aggregation and branch ratio affecting on performance of the zone from the view of from and appearance was surveyed. The factors interfering in SPSS software and their correlations were specified and specific coefficients stand in their related charts. By considering in the zone width and charts it is specified which of the sub zones has the most flowage potential from the view of the zones physical and numeral qualifications. All plots were prepared using GIS and WMS software and the studied zone’s hydrograph was depicted.展开更多
The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parame...The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.展开更多
Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This p...Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This paper selected MIROC4h as a future projection of rainfall in the Sittaung River basin, Myanmar, with the fine spatial resolution of 0.5°. At first, MIROC4h projection towards 2035 was corrected by using the error trend (GSMaP-MIROC4h) for nine years over-rapping of both outputs from 2006 to 2014. Assuming the seasonal autoregressive processes, future error trend at each grid point was estimated by the time series forecast of SARMAP processes using the nine years training data. Then future projection correction was done by M1ROC4h output plus error trend at each grid point to obtain the corrected MIROC4h precipitation. As a historical analysis, using the corrected precipitation in the Sittaung River basin and observed river discharge at the outlet of the river, the hydrological model (HSPF (Hydrological Simulation Program Fortran)) calibration was carried out with consideration of the water utilization data for darn/reservoir and irrigation. As a projection analysis, future simulation of hourly discharge at the outlet of Sittaung River from 2015 to 2035 was conducted by using the corrected MIROC4h precipitation. The results of projection analysis show that high risks of flood will appear in 2023 and 2028 and the risks of draught will be expected in 2019-2021.展开更多
Register in the framework of the International Program of Research on Water Resources Management and Protection of Ecosystems, the Congo basin in which lies the catchment area of the Kadey (2647 km2) was selected to b...Register in the framework of the International Program of Research on Water Resources Management and Protection of Ecosystems, the Congo basin in which lies the catchment area of the Kadey (2647 km2) was selected to better assess the impact climate variability on the water surface in the perspective of supply drinking water both in the rainy season and in periods of low water. Based on new data from rainfall and flow rates obtained in the last fifteen years (1998-2013), the major trends in time series and the scope of the “drought” were identified. The historical rainfall in the basin is characterized by two major ruptures rainfall in 1969 and 1999. These have generated an order deficit of 14% respectively and an excess of nearly 19%. These phenomena also affected the recurrence of cumulative rainfall throughout the Kadey basin. Here, the hydrological response to excess rainfall is over 100%. However, it appears that over the period 1970-2012, the number of years that has undergone a “severe drought” is to play down.展开更多
In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the ...In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the basin is more vulnerable to climate variability, especially precipitation and temperature. Observed hydroclimatic data (1950-2015) was analysed using a statistical approach. The potential impact of future climate change on the hydrological regime is quantified using the GR2M model and two climate models: HadGEM2-ES and MIROC5 from CMIP5 under RCP 4.5 and RCP 8.5 greenhouse gas emission scenarios. The main result shows that precipitation varies significantly according to the geographical location and time in the Upper Benue basin. The trend analysis of climatic parameters shows a decrease in annual average precipitation across the study area at a rate of -0.568 mm/year which represents about 37 mm/year over the time 1950-2015 compared to the 1961-1990 reference period. An increase of 0.7°C in mean temperature and 14% of PET are also observed according to the same reference period. The two climate models predict a warming of the basin of about 2°C for both RCP 4.5 and 8.5 scenarios and an increase in precipitation between 1% and 10% between 2015 and 2100. Similarly, the average annual flow is projected to increase by about +2% to +10% in the future for both RCP 4.5 and 8.5 scenarios between 2015 and 2100. Therefore, it is primordial to develop adaptation and mitigation measures to manage efficiently the availability of water resources.展开更多
The significance of this study lies in its exploration of the advanced applications of Geographic Information Systems (GIS) in assessing urban flood risks, with a specific focus on Midar, Morocco. This research is piv...The significance of this study lies in its exploration of the advanced applications of Geographic Information Systems (GIS) in assessing urban flood risks, with a specific focus on Midar, Morocco. This research is pivotal as it showcases that GIS technology is not just a tool for mapping, but a critical component in urban planning and emergency management strategies. By meticulously identifying and mapping flood-prone areas in Midar, the study provides invaluable insights into the potential vulnerabilities of urban landscapes to flooding. Moreover, this research demonstrates the practical utility of GIS in mitigating material losses, a significant concern in flood-prone urban areas. The proactive approach proposed in this study, centered around the use of GIS, aims to safeguard Midar’s population and infrastructure from the devastating impacts of floods. This approach serves as a model for other urban areas facing similar challenges, highlighting the indispensable role of GIS in disaster preparedness and response. Overall, the study underscores the transformative potential of GIS in enhancing urban resilience, making it a crucial tool in the fight against natural disasters like floods.展开更多
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud...Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.展开更多
Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric...Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.展开更多
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydr...The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.展开更多
Based on 1961-2000 NCEP/NCAR monthly mean reanalysis datasets, vapor transfer and hydrological budget over the Tibetan Plateau are investigated. The Plateau is a vapor sink all the year round. In summer, ...Based on 1961-2000 NCEP/NCAR monthly mean reanalysis datasets, vapor transfer and hydrological budget over the Tibetan Plateau are investigated. The Plateau is a vapor sink all the year round. In summer, vapor is convergent in lower levels (from surface to 500 hPa) and divergent in upper levels (from 400 to 300 hPa), with 450 hPa referred to as level of non-divergence. Two levels have different hydrologic budget signatures: the budget is negative at the upper levels from February to November, i.e., vapor transfers from the upper levels over the plateau; as to the lower, the negative (positive) budget occurs during the winter (summer) half year. Evidence also indicates that Tibetan Plateau is a 'vapor transition belt', vapor from the south and the west is transferred from lower to upper levels there in summer, which will affect surrounding regions, including eastern China, especially, the middle and lower reaches of the Yangtze. Vapor transfer exerts significant influence on precipitation in summertime months. Vapor transferred from the upper layers helps humidify eastern China, with coefficient -0.3 of the upper budget to the precipitation over the middle and lower reaches of the Yangtze (MLRY); also, vapor transferred from east side (27.5 o -32.5 o N) of the upper level has remarkable relationship with precipitation, the coefficient being 0.41. The convergence of the lower level vapor has great effects on the local precipitation over the plateau, with coefficient reaching 0.44, and the vapor passage affects the advance and retreat of the rainbelt. In general, atmospheric hydrologic budget and vapor transfer over the plateau have noticeable effects on precipitation of the target region as well as the ambient areas.展开更多
文摘Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region.
基金Supported by National Natural Science Foundation of China(40972207)National S&T Major Project(2009ZX05039-004)~~
文摘Hydrological process factors are a reflection of the physical mechanism of basin hydrology,which can provide important basis for the use and protection of water resources.Taking Heihe River Mountain Basin as the study area,the hydrological simulation was made based on SWAT-GIS integrated model platform.The calculation methods of hydrological process factors using SWAT model were described based on the simulation results of runoff from 1990 to 2000.Hydrological process factors in the study area were analyzed by using GIS technology.The spatial and temporal characteristics of precipitation,runoff,infiltration,evapotranspiration and snowmelt in the basin were calculated and analyzed.
基金supported by the National Natural Science Foundation of China (Grant No. 40471018)the National Basic Research Program of China (973 Program, Grant No. 2002 CB412310)Hundred Talents Programme of the Chinese Academy of Sciences
文摘With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.
文摘Mathematical models of the quantity and quality of water in hydrographic basins enable simulation of a wide variety of processes, including the production of water and sediments, and the dynamics of point and nonpoint sources of pollution. These models have become increasingly complex, requiring large amounts of input data, which can increase the uncertainty of the results of simulations. For this reason, it is essential to perform calibration and validation procedures. The objective of this work was to conduct sensitivity analysis and calibration of a distributed hydrological model (SWAT) applied to the flows of water in the watershed of the Poxim River. Satisfactory performance of the model was indicated by the values obtained for the Nash-Sutcliffe efficiency coefficient (0.77), the percent bias (5.05), the root mean square error (0.48), and the ratio of the RMSE to the standard deviation of the observations (RSR) (0.49). The set of parameters identified here could be used for the simulation and evaluation of other scenarios.
文摘Hydrological events should be described through several correlated variables, so multivariate HFA has gained popularity and become an active research field during recent years. However, at present multivariate HFA mainly focuses directly on fitting the frequency distribution without confirming whether the assumptions are satisfied. Neglecting testing these assumptions could get severely wrong frequency distribution. This paper uses multivariate Mann-Kendal testing to detect the multivariate trends of annual flood peak and annual maximum 15 day volume for four control hydrological stations in the?Upper Yangtze River Basin. Results indicate that multivariate test could detect the trends of joint variables, whereas univariate tests can only detect the univariate trends. Therefore, it is recommended to jointly apply univariate and multivariate trend tests to capture all the existing trends.
基金supported by the National Natural Science Foundation of China (Grant No. 40801030 and 40801025)the Major State Basic Research Development Program of China (973 Program) (2007CB411506)+1 种基金the Innovation Project of Chinese Academy Sciences (Kzcx2-yw-301)the National Basic Work Program of Chinese MST (Glacier Inventory of China Ⅱ, Grant No. 2006FY110200)
文摘Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacial discharge is partly controlled by the geometry of the glacial drainage network and by the process of producing meltwater. The glacial-drainage system of some alpine glaciers has been characterized using a model based on proglacial discharge analysis. In this paper, we apply cross-correlation analysis to hourly hydro-climatic data collected from China's Hailuogou Glacier, a typical temperate glacier in Mt. Gongga, to study the seasonal status changes of the englacial and subglacial drainage systems by discharge-temperature (Q-T) time lag analy-sis. During early ablation season (April-May) of 2003, 2004 and 2005, the change of englacial and subglacial drainage system usually leads several outburst flood events, which are also substantiated by observing the leakage of supraglacial pond and cre-vasses pond water during field works in April, 2008. At the end of ablation season (October-December), the glacial-drainage net-works become less hydro-efficient. Those events are evidenced by hourly hydro-process near the terminus of Hailuogou Glacier, and the analysis of Q-T time lags also can be a good indicator of those changes. However, more detailed observations or experi-ments, e.g. dye-tracing experiment and recording borehole water level variations, are necessary to describe the evolutionary status and processes of englacial and subglacial drainage systems evolution during ablation season.
文摘This paper reviews the significant contribution of hydrologic continuity in the development, evolution and fate of the Niger Delta. Formed from the aggregation of sediments from a drainage catchment area of over 2 million km<sup>2</sup>, the Niger Delta has evolved into a prolific sedimentary basin with a dense network of rivers and creeks. The ecological system is in a fragile state with fresh and saline water ecosystems maintaining a dynamic equilibrium. Rainfall typically varies from 2500 - 4000 mm per year compared to average annual evaporation of about 1500 mm, resulting in net antecedent moisture. Over 70% of the rainfall occurs in 4 months between May and September, creating a potential for flooding. Water level varies from less than 1.5 m in the estuaries to about 8 m at the apex of the delta, with Nun River having a slightly higher elevation compared to Forcados River, implying that canals connecting both rivers at the same reach would experience water movements from Nun to Forcados River. Similarly, water level gradients vary across the stretch of the rivers from 8.6 to 9.5 × 10<sup>-5</sup> (cm/km) between Onitsha and Asamabiri, 7.5 to 7.7 × 10<sup>-5</sup> (cm/km) on the Forcados River downstream of Asamabiri, and from 7.4 to 7.6 × 10<sup>-5</sup> (cm/km) on the Nun River. At peak flood, about 23 × 10<sup>3</sup> m<sup>3</sup>/sec of runoff enters the Niger Delta. At the same time, about 16 × 10<sup>3</sup> m<sup>3</sup>/sec discharges from the estuaries into the ocean in a semi-diurnal tidal flow leaving a surplus that accumulates to cause flooding. The delta thus acts like a sponge, absorbing the shear amount of flow and releasing slowly stored water through at least twenty-one outlet estuaries into the Atlantic Ocean. The shear amount of discharge overwhelms the capacity of the network of distributaries and predisposes the delta to flooding. Assessment of the capacity of the rivers to evacuate pollutants showed that rivers to the west of Brass which are fed by Forcados River exhibited relatively stronger flux efficiencies prior to 1998 but are presently weaker compared to rivers fed by Nun. The rivers to the east between New Calabar and Imo Rivers exhibited very weak ebb tide asymmetry or net upstream flow largely because these rivers receive little or no freshwater influx from upstream sources. Flood and erosion are the major hydrological hazards in the region.
文摘[ Objective] The research aimed to analyze hydrological regimes of the medium and small rivers in Hami of Xinjiang. [ Method] According to actual observation data at Toudaogou hydrological station during 1956 -2010, climate, runoff, flood, sediment and water quality in the basin were analyzed. [ Result] Runoff in Toudaogou River was mainly from bedrock fissure water and rainfall, and depended on temperature and precipi- tation in the catchment zone. Runoff in Toudaogou River had very big change during the year. Runoff in whole year mainly concentrated during April -June, which occupied 57.9% of annual runoff. Flood in Toudaogou basin was divided into spring and summer flood from time, and snowmelt and rainstorm flood from type. Sediment load was related to terrain, gradient, runoff, precipitation, flood and process. Suspended sediment load at Toudaogou hydrological station had close relationship with the annual maximum flow capacity of flood peak, and related coefficient was 0.917. [ Conclusion] Hydrological regime in Toudaogou basin basically represented corresponding hydrological information of rivers without glacier water supply in Hami even whole western arid zone of China. The research could provide theoretical basis for scientifically using water resources of the medium and small rivers in the zone.
文摘Remote sensing analysis is an efficient tool for updating geological maps. The regional scale map obtained in this project from compilation of the pre-existing maps and of a number of space images is somewhat more complete. It takes into account the usual field and laboratory parameters of the rock units, through the previous geologic maps, together with remote sensing parameters such as spectral signatures, textures, roughness, morphology that are observed from optical, microwave and DEM imagery. With more rock characteristics, the old maps are obligatory improved. The Cenozoic faulting in the Al Hamra al Hamadah plateau is largely influenced by the tectonics affecting the Paleozoic oil bearing structures that are hidden by the late Cretaceous-Paleocene layers. The tectonic style is that of reactivation of the Paleozoic faults under effects of the NNE-trending regional tension. Then the faults on the surface of the plateau would indicate location of the hidden Paleozoic faults in depth. A flat plateau, in the arid environment, appears to be a very favorable environment for mapping of gentle folds, faults and tectonic sinkholes. Remote sensing is a fruitful approach in this case study. The gentle anticlines for instance are undetectable in the field, but computer assisted shadowing with a low elevation angle of illumination is the key processing for evidencing these features. Problems of drillings in the area are well known for example to Waha, AGOCO and PB Companies during their exploration activities in the concessions in Ghadames Basin. According to them several incidents of losing drilling Pits have occurred and drilling came into a hole. Because this paper is aimed to know the exact location of sinkholes in the Ghadames basin, I would recommend all the oil companies to review this work and try to trace the sinkholes indicated to minimize the risk of drilling problems.
文摘The numeral trait of aquiferous zones in flowage studies and estimations is under most parts of nation. In this study Karaj aquiferous zone in Alborz province was surveyed from the view point of form, the agglomeration of drainage net length of channel and space. The orientation of hillside was specified as the affective factor on creating and streaming the flowage. A flow aggregating hydrological model for the studied zone was prepared and amount of the flow is mostly in which parts of the zone the delay and centralization time in the zone was evaluated and the related diagrams were derived. Finally, the zone was divided into 4 main subzones and their drainage nets were ranked and by 4 factors namely, space, length of canal, drainage aggregation and branch ratio affecting on performance of the zone from the view of from and appearance was surveyed. The factors interfering in SPSS software and their correlations were specified and specific coefficients stand in their related charts. By considering in the zone width and charts it is specified which of the sub zones has the most flowage potential from the view of the zones physical and numeral qualifications. All plots were prepared using GIS and WMS software and the studied zone’s hydrograph was depicted.
文摘The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.
文摘Based on the comparison between several model outputs from CMIP5 (Coupled Model Intercomparison Project Phase-5) and the satellite rainfall mapping data of GSMaP (global satellite mapping of precipitation), This paper selected MIROC4h as a future projection of rainfall in the Sittaung River basin, Myanmar, with the fine spatial resolution of 0.5°. At first, MIROC4h projection towards 2035 was corrected by using the error trend (GSMaP-MIROC4h) for nine years over-rapping of both outputs from 2006 to 2014. Assuming the seasonal autoregressive processes, future error trend at each grid point was estimated by the time series forecast of SARMAP processes using the nine years training data. Then future projection correction was done by M1ROC4h output plus error trend at each grid point to obtain the corrected MIROC4h precipitation. As a historical analysis, using the corrected precipitation in the Sittaung River basin and observed river discharge at the outlet of the river, the hydrological model (HSPF (Hydrological Simulation Program Fortran)) calibration was carried out with consideration of the water utilization data for darn/reservoir and irrigation. As a projection analysis, future simulation of hourly discharge at the outlet of Sittaung River from 2015 to 2035 was conducted by using the corrected MIROC4h precipitation. The results of projection analysis show that high risks of flood will appear in 2023 and 2028 and the risks of draught will be expected in 2019-2021.
文摘Register in the framework of the International Program of Research on Water Resources Management and Protection of Ecosystems, the Congo basin in which lies the catchment area of the Kadey (2647 km2) was selected to better assess the impact climate variability on the water surface in the perspective of supply drinking water both in the rainy season and in periods of low water. Based on new data from rainfall and flow rates obtained in the last fifteen years (1998-2013), the major trends in time series and the scope of the “drought” were identified. The historical rainfall in the basin is characterized by two major ruptures rainfall in 1969 and 1999. These have generated an order deficit of 14% respectively and an excess of nearly 19%. These phenomena also affected the recurrence of cumulative rainfall throughout the Kadey basin. Here, the hydrological response to excess rainfall is over 100%. However, it appears that over the period 1970-2012, the number of years that has undergone a “severe drought” is to play down.
文摘In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the basin is more vulnerable to climate variability, especially precipitation and temperature. Observed hydroclimatic data (1950-2015) was analysed using a statistical approach. The potential impact of future climate change on the hydrological regime is quantified using the GR2M model and two climate models: HadGEM2-ES and MIROC5 from CMIP5 under RCP 4.5 and RCP 8.5 greenhouse gas emission scenarios. The main result shows that precipitation varies significantly according to the geographical location and time in the Upper Benue basin. The trend analysis of climatic parameters shows a decrease in annual average precipitation across the study area at a rate of -0.568 mm/year which represents about 37 mm/year over the time 1950-2015 compared to the 1961-1990 reference period. An increase of 0.7°C in mean temperature and 14% of PET are also observed according to the same reference period. The two climate models predict a warming of the basin of about 2°C for both RCP 4.5 and 8.5 scenarios and an increase in precipitation between 1% and 10% between 2015 and 2100. Similarly, the average annual flow is projected to increase by about +2% to +10% in the future for both RCP 4.5 and 8.5 scenarios between 2015 and 2100. Therefore, it is primordial to develop adaptation and mitigation measures to manage efficiently the availability of water resources.
文摘The significance of this study lies in its exploration of the advanced applications of Geographic Information Systems (GIS) in assessing urban flood risks, with a specific focus on Midar, Morocco. This research is pivotal as it showcases that GIS technology is not just a tool for mapping, but a critical component in urban planning and emergency management strategies. By meticulously identifying and mapping flood-prone areas in Midar, the study provides invaluable insights into the potential vulnerabilities of urban landscapes to flooding. Moreover, this research demonstrates the practical utility of GIS in mitigating material losses, a significant concern in flood-prone urban areas. The proactive approach proposed in this study, centered around the use of GIS, aims to safeguard Midar’s population and infrastructure from the devastating impacts of floods. This approach serves as a model for other urban areas facing similar challenges, highlighting the indispensable role of GIS in disaster preparedness and response. Overall, the study underscores the transformative potential of GIS in enhancing urban resilience, making it a crucial tool in the fight against natural disasters like floods.
基金funded by the National Natural Science Foundation of China(42371022,42030501,41877148).
文摘Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.
基金supported by the U.S.Department of Energy, Office of Science, Biological and Environmental Research, as part of the Earth System Modeling ProgramThe NASA Modeling, Analysis, and Prediction (MAP) Program by the Science Mission Directorate at NASA Headquarters supported the work contributed by Teppei J.YASUNARI and William K.M.LAU+2 种基金The NASA GEOS-5 simulation was implemented in the system for NASA Center for Climate Simulation (NCCS).M.G.Flanner was partially supported by NSF 1253154support from the China Scholarship FundThe Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830
文摘Light absorbing particles(LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance(a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice(LAPSI) has been identified as one of major forcings affecting climate change, e.g.in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, and climatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.
文摘The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.
基金The Key Project of the Ministry of Science and Technology No.2001CCB00400 China Climbing Project B-TIPEX
文摘Based on 1961-2000 NCEP/NCAR monthly mean reanalysis datasets, vapor transfer and hydrological budget over the Tibetan Plateau are investigated. The Plateau is a vapor sink all the year round. In summer, vapor is convergent in lower levels (from surface to 500 hPa) and divergent in upper levels (from 400 to 300 hPa), with 450 hPa referred to as level of non-divergence. Two levels have different hydrologic budget signatures: the budget is negative at the upper levels from February to November, i.e., vapor transfers from the upper levels over the plateau; as to the lower, the negative (positive) budget occurs during the winter (summer) half year. Evidence also indicates that Tibetan Plateau is a 'vapor transition belt', vapor from the south and the west is transferred from lower to upper levels there in summer, which will affect surrounding regions, including eastern China, especially, the middle and lower reaches of the Yangtze. Vapor transfer exerts significant influence on precipitation in summertime months. Vapor transferred from the upper layers helps humidify eastern China, with coefficient -0.3 of the upper budget to the precipitation over the middle and lower reaches of the Yangtze (MLRY); also, vapor transferred from east side (27.5 o -32.5 o N) of the upper level has remarkable relationship with precipitation, the coefficient being 0.41. The convergence of the lower level vapor has great effects on the local precipitation over the plateau, with coefficient reaching 0.44, and the vapor passage affects the advance and retreat of the rainbelt. In general, atmospheric hydrologic budget and vapor transfer over the plateau have noticeable effects on precipitation of the target region as well as the ambient areas.