期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Initiatives to clarify mechanisms of hydrological evolution in human-influenced Yellow River Basin 被引量:2
1
作者 Li-liang Ren Shan-shui Yuan +6 位作者 Xiao-li Yang Shan-hu Jiang Gui-bao Li Qiu-an Zhu Xiu-qin Fang Yi Liu Yi-qi Yan 《Water Science and Engineering》 EI CAS CSCD 2023年第2期117-121,共5页
Significant changes in water cycle elements/processes have created serious challenges to regional sustainability and high-quality development in the Yellow River Basin in China.It is necessary to investigate the impac... Significant changes in water cycle elements/processes have created serious challenges to regional sustainability and high-quality development in the Yellow River Basin in China.It is necessary to investigate the impacts of climate change and human activities on hydrological evolution and disaster risk from a holistic perspective of the basin.This study developed initiatives to clarify the mechanisms of hydrological evolution in the human-influenced Yellow River Basin.The proposed research method includes:(1)a tool to simulate multiple factors and a multi-scale water cycle using a grid-based spatiotemporal coupling approach,and(2)a new algorithm to separate the responses of the water cycle to climate change and human impacts,and de-couple the eco-environmental effects using artificial intelligence techniques.With this research framework,key breakthroughs are expected to be made in the understanding of the impacts of land cover change on the water cycle and blue/green water redirection.The outcomes of this research project are expected to provide theoretical support for ecological protection and water governance in the basin. 展开更多
关键词 Climate change Human activities hydrological evolution Runoff change Yellow River Basin
下载PDF
Seasonal evolution of the englacial and subglacial drainage systems of a temperate glacier revealed by hydrological analysis 被引量:3
2
作者 Qiao Liu ShiYin Liu 《Research in Cold and Arid Regions》 2010年第1期51-58,共8页
Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacia... Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacial discharge is partly controlled by the geometry of the glacial drainage network and by the process of producing meltwater. The glacial-drainage system of some alpine glaciers has been characterized using a model based on proglacial discharge analysis. In this paper, we apply cross-correlation analysis to hourly hydro-climatic data collected from China's Hailuogou Glacier, a typical temperate glacier in Mt. Gongga, to study the seasonal status changes of the englacial and subglacial drainage systems by discharge-temperature (Q-T) time lag analy-sis. During early ablation season (April-May) of 2003, 2004 and 2005, the change of englacial and subglacial drainage system usually leads several outburst flood events, which are also substantiated by observing the leakage of supraglacial pond and cre-vasses pond water during field works in April, 2008. At the end of ablation season (October-December), the glacial-drainage net-works become less hydro-efficient. Those events are evidenced by hourly hydro-process near the terminus of Hailuogou Glacier, and the analysis of Q-T time lags also can be a good indicator of those changes. However, more detailed observations or experi-ments, e.g. dye-tracing experiment and recording borehole water level variations, are necessary to describe the evolutionary status and processes of englacial and subglacial drainage systems evolution during ablation season. 展开更多
关键词 glacier drainage system temperate glacier seasonal evolution time lag glacier runoff hydrologic process Hailuogou Glacier
下载PDF
Ecological and hydrologic evolution history in the sensitive zone of both East Asian summer monsoon and Westerly since the Last Glacial Maximum
3
作者 LI Yu PENG Si-min 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1266-1281,共16页
The Qilian Mountains,located in the northeastern Qinghai-Tibet Plateau,is a sensitive zone of both East Asian summer monsoon(EASM)and westerly winds(WW).The evolution history and driving mechanism of the ecosystem and... The Qilian Mountains,located in the northeastern Qinghai-Tibet Plateau,is a sensitive zone of both East Asian summer monsoon(EASM)and westerly winds(WW).The evolution history and driving mechanism of the ecosystem and hydrologic cycle in this region on long-term timescales have not yet been clarified.In this study,we comprehensively study the hydrologic and ecological evolution history in the sensitive zone since the Last Glacial Maximum(LGM)by integrating surface sediments,paleoclimate records,TraCE-21ka transient simulations,and PMIP3-CMIP5 multi-model simulation.Results show that hydrologic and ecological proxies from surface sediments are significantly different from west to east and mainly divided into three sections:the monsoonaffected region in the eastern Qilian Mountains,the intersection region in the central Qilian Mountains,and the westerly-affected region in the western Qilian Mountains.Meanwhile,paleo-ecological and paleohydrologic reconstructions from the surroundings uncover a synchronous climate evolution that the EASM mainly controls the eastern Qilian Mountains and penetrates the central Qilian Mountains in monsoon intensity maximum,while the WW dominates the central and western Qilian Mountains on both glacial-interglacial and millennial timescales.The simulation results further bear out the glacial humid climate in the central and western Qilian Mountains caused by the enhanced WW,and the humidity maximum in the eastern Qilian Mountains controlled by the strong mid-Holocene monsoon.In general,east-west differences in climate pattern and response for the EASM and the WW are integrally stable on both short-term and long-term timescales. 展开更多
关键词 EastAsian summer monsoon Westerly winds Last Glacial Maximum Ecological and hydrologic evolution history Qilian Mountains
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部