Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-...Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter-annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.展开更多
Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta...Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China.展开更多
Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Prov...Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.展开更多
The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze R...The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin.展开更多
Hydrological drought is usually characterised by water loss over time from both underground and surface supplies. Thus for this study, the assessment of hydrological drought was carried out by employing Cumulative Rai...Hydrological drought is usually characterised by water loss over time from both underground and surface supplies. Thus for this study, the assessment of hydrological drought was carried out by employing Cumulative Rainfall/Streamflow </span><span style="font-family:""><span style="font-family:Tahoma;">Anomaly as preliminary tools for the presence of drought signatures while detailed characterisation was via Streamflow Drought Index (SDI). The results revealed that hydrological drought was observed in all the stations;however, though in general, the stations could be classified as experiencing near normal drought conditions with mild drought signatures. The findings also revealed that the average streamflow deficit volume and durations of the hydrological drought severity were 1.780 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 192 months, 1.444 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, 3.148 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, and 0.159 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 372 months for Bakolori, Goronyo (pre dam construction era), Goronyo (post dam construction era) and Zobe stations, respectively. The results also revealed the relevance of flow duration curve and analysis of frequency of drought state transition for the development of scenario-based basin water resources management protocol. The coefficient of determination (R</span><sup><span style="font-family:Tahoma;">2</span></sup><span style="font-family:Tahoma;">) statistic of the developed regression models indicate that 73.3% and 86.5% variation in streamflow dynamics across the Basin can be explained by climate change variables. However, for sustainable management of water resources in the Basin, it is imperative that characterisation of hydrological drought and monitoring should employ robust indices which use improved monthly precipitation estimates under global warming scenario in addition to ensuring that there is a shift from reactive to proactive approach in order to combat hydrological risk. Hence, a robust framework that finds application both for planning mitigation actions which embody strategic, tactical and emergency components should be designed;to this end, analysis of persistence and recurrence of drought in time and determination of possible recurrent patterns are necessary.展开更多
The Lancang–Mekong River(LMR)is an important transboundary river that originates from the Qinghai–Tibet Plateau,China and flows through six nations before draining into the South China Sea.Knowledge about the past a...The Lancang–Mekong River(LMR)is an important transboundary river that originates from the Qinghai–Tibet Plateau,China and flows through six nations before draining into the South China Sea.Knowledge about the past and future changes in climate and water for this basin is critical in order to support regio-nal sustainable development.This paper presents a comprehensive review of the scientific progress that has been made in understanding the changing climate and water systems,and discusses outstanding challenges and future research opportunities.The existing literature suggests that:①The warming rate in the Lancang–Mekong River Basin(LMRB)is higher than the mean global warming rate,and it is higher in its upper portion,the Lancang River Basin(LRB),than in its lower portion,the Mekong River Basin(MRB);②historical precipitation has increased over the LMRB,particularly from 1981 to 2010,as the wet season became wetter in the entire basin,while the dry season became wetter in the LRB but drier in the MRB;③in the past,streamflow increased in the LRB but slightly decreased in the MRB,and increases in streamflow are projected for the future in the LMRB;and④historical streamflow increased in the dry season but decreased in the wet season from 1960 to 2010,while a slight increase is projected during the wet season.Four research directions are identified as follows:①investigation of the impacts of dams on river flow and local communities;②implementation of a novel water–energy–food–ecology(WEFE)nexus;③integration of groundwater and human health management with water resource assessment and management;and④strengthening of transboundary collaboration in order to address sustainable development goals(SDGs).展开更多
Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studi...Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was conducted on the 5240 ha Turkey Creek watershed (WS 78) draining a 3rd order stream on the Santee Experimental Forest within the South Carolina Atlantic Coastal Plain, USA. The study objectives were to present the hydrologic characteristics of this relatively undisturbed, except by a hurricane (Hugo, 1989), forested water-shed and to discuss key elements for watershed management, including water resource assessment (WRM), modeling integrated water resources management, environmental assessment, land use planning, social impact assessment, and information management. Runoff coefficients, flow duration curves, flood and low flow frequency curves, surface and ground water yields were assessed as elements of the WRM. Results from the last 10 years of interdisciplinary studies have also advanced the understanding of coastal ecohydrologic characteristics and processes, water balance, and their modeling including the need of high resolution LiDAR data. For example, surface water dynamics were shown to be regulated primarily by the water table, dependent upon pre- cipitation and evapotranspiration (ET). Analysis of pre- and post-Hugo streamflow data showed somewhat lower but insignificant (α = 0.05) mean annual flow but increased frequency of larger flows for the post-Hugo compared with the pre-Hugo level. However, there was no significant difference in mean annual ET, potentially indicating the resiliency of this coastal forest. Although the information from this study may be useful for comparison of coastal ecohydrologic issues, it is becoming increasingly clear that multi-site studies may be warranted to understand these complex systems in the face of climate change, sea level rise, and increasing development in coastal regions.展开更多
This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a dis...This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.展开更多
Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') pr...Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') projections under the representative concentration pathway(RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to2050, with precipitation decrease in the 2020 s and increase in the 2030 s. The VIC model performs well for monthly discharge simulations with better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050 are projected to decrease by 2.76% on average within the range from-7.81% to 7.40%. It is essential to consider the potential impact of climate change on water resources in future planning for sustainable utilization of water resources.展开更多
The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and h...The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and human living conditions.Based on the results of 1∶250000 regional hydrogeological surveys and previous researches,this study systematically investigates the circulation characteristics and resource properties of the groundwater as well as the evolution of the climate and ecological environment since the Quaternary in the Badain Jaran Desert by means of geophysical exploration,hydrogeological drilling,hydrogeochemistry,and isotopic tracing.The results are as follows.(1)The groundwater in the Badain Jaran Desert is mainly recharged through the infiltration of local precipitation and has poor renewability.The groundwater recharge in the desert was calculated to be 1.8684×10^(8)m^(3)/a using the water balance method.(2)The Badain Jaran Desert has experienced four humid stages since the Quaternary,namely MIS 13-15,MIS 5,MIS 3,and the Early‒Middle Holocene,but the climate in the desert has shown a trend towards aridity overall.The average annual temperature in the Badain Jaran Desert has significantly increased in the past 50 years.In detail,it has increased by about 2.5℃,with a higher rate in the south than in the north.Meanwhile,the precipitation amount has shown high spatial variability and the climate has shown a warming-drying trend in the past 50 years.(3)The lakes in the hinterland of the Badain Jaran Desert continuously shrank during 1973‒2015.However,the vegetation communities maintained a highly natural distribution during 2000‒2016,with the vegetation cover has increased overall.Accordingly,the Badain Jaran Desert did not show any notable expansion in that period.This study deepens the understanding of groundwater circulation and the climate and ecological evolution in the Badain Jaran Desert.It will provide a scientific basis for the rational exploitation of the groundwater resources and the ecological protection and restoration in the Badain Jaran Desert.展开更多
A detailed assessment on water resources of HNNR is to find the changing rules in time and space scale of water resources of HNNR and its adjacent areas, and the generating and degrading factors of wetland and provide...A detailed assessment on water resources of HNNR is to find the changing rules in time and space scale of water resources of HNNR and its adjacent areas, and the generating and degrading factors of wetland and provide scientific base on restoring and managing the hydrologic regime for planning and designing at HNNR. Both the assessment area and its adjacent watershed of Bielahong River belong to the same region in the climate and surface features. Total of 46 years of serial data from 1956 2001 in the Bielahong Hydrology Station was employed. Typical analysis of the serial runoff was conducted by adopting the residual mass curve method. The calculation methods of hydrological parameters are valuable for analyzing the water balance of HNNR. The results showed that the inputs of 118.29×10 6 m 3 of the surface runoff and 1 478km 2 of the areas of natural watershed in HNNR were decreased. At the same time some measurements to control and prevent water resources decreased have been proposed.展开更多
This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development o...This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development of this technology in the world was briefly reviewed and the distinction between land treatment and conventional wastewater irrigation was discussed in details. The fundamental characteristics and functions as well as the integrity and compatibility of this ecological engineering were also summarized. It was finally concluded that this technology for wastewater treatment has broad prospects of application in China.展开更多
This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the...This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.展开更多
Climate change impacts on water resources are expected to be significant in Yemen. Efforts have been made to understand the expected changes and develop mitigation possibilities for the expected scenarios for a future...Climate change impacts on water resources are expected to be significant in Yemen. Efforts have been made to understand the expected changes and develop mitigation possibilities for the expected scenarios for a future sustainable use of resources and mitigation of expected impacts. The paper describes the development of a detailed baseline database and the assessment of climate change and variability impacts on water resources over the 2030, 2050 and 2080 time horizon on a Yemen-wide scale. Based on downscaled Global Climate Model data, a range of scenarios were established, representing potential Mean, Warm & Wet and Hot & Dry conditions as derived by evaluating worst case scenarios from the ensemble of the global models for the specified years. The results of the model include an estimated runoff coefficient, monthly rainfall, runoff, infiltration and evaporation representing the water balance in the different catchments. Analysis of the different evaluated scenarios shows that in the Mid, Warm and Wet scenario the hydrological components are generally higher than in the baseline scenario. For the Hot & Dry scenario, runoff, infiltration and evapotranspiration are decreasing due to the decreasing precipitation and increase in temperature. The relative changes in runoff are strongest.展开更多
1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surf...1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surface point. We organized data at the sections with 100 m of interval to simulate water system,establish coding system of river network,and build associated point with slope surface system. " Hillside hydrology" theory simulated subsurface flow between surface water and groundwater,and used catchment water at slope surface point,gradient,valley line and depletion curve to study soil moisture distribution in the basin.展开更多
This paper examines the geomorphology and hydrology of the Benin Region, Edo State, Nigeria. The major landform features and processes of the region are highlighted. This region is a strategic and significant landscap...This paper examines the geomorphology and hydrology of the Benin Region, Edo State, Nigeria. The major landform features and processes of the region are highlighted. This region is a strategic and significant landscape in Nigeria. Information was gathered on the various aspects of the landscape, including the Geology, Physiography (Relief) and Geomorphology, Geomorphic processes, Weathering, Drainage processes, Landforms, Surface Water Hydrology and Water Resources. The Benin Region is underlained by sedimentary formation of the South Sedimentary Basin. The geology is generally marked by top reddish earth, composed of ferruginized or literalized clay sand. Geologically, the Benin Region comprises of 1) the Benin formation;2) alluvium;3) drift/top soil and 4) Azagba-Ogwashi (Asuba-Ogwashi) formation. Several parts of the region are surrounded by the Benin historical moats. The region has been described as a tilled plain in the south western direction. The local relief of the region is 91 m. Boreholes records in the Benin Region show evidence of deep chemical weathering overtime. Soil profile reveals that the region is composed mainly of reddish brown sandy laterite. Intermittent layers of porous sands of sandy clays may reach a large depth as found in the borehole drilled in the region. These are products of deep chemical decay of the original parent rock materials. Three river systems drain the Benin Region. They are the Ikpoba River, the Ogba River and Owigie-Ogbovben River systems. The mean annual discharge of Ikpoba River for 1982-1983 and 1993-2002 was 1411 mm/yr, which was 1.019 × 10<sup>9</sup> m<sup>3</sup> with a mean annual baseflow of 1256.23 mm (0. 907 × 109 m<sup>3</sup>). This constitutes 87.65% of the total flow. It has a mean annual surface runoff of 225.18 mm (0.112 × 10<sup>9</sup> m<sup>3</sup>) or 24.4 % of the total discharge. The water resources of the region include surface water and underground water.展开更多
Hydrological forecasting plays an important role in water resource management, supporting socio-economic development and managing water-related risks in river basins. There are many flow forecasting techniques that ha...Hydrological forecasting plays an important role in water resource management, supporting socio-economic development and managing water-related risks in river basins. There are many flow forecasting techniques that have been developed several centuries ago, ranging from physical models, physics-based models, conceptual models, and data-driven models. Recently, Artificial Intelligence (AI) has become an advanced technique applied as an effective data-driven model in hydrological forecasting. The main advantage of these models is that they give results with compatible accuracy, and require short computation time, thus increasing forecasting time and reducing human and financial effort. This study evaluates the applicability of machine learning and deep learning in Hanoi water level forecasting where it is controlled for flood management and water supply in the Red River Delta, Vietnam. Accordingly, SANN (machine learning algorithm) and LSTM (deep learning algorithm) were tested and compared with a Physics-Based Model (PBM) for the Red River Delta. The results show that SANN and LSTM give high accuracy. The R-squared coefficient is greater than 0.8, the mean squared error (MSE) is less than 20 cm, the correlation coefficient of the forecast hydrology is greater than 0.9 and the level of assurance of the forecast plan ranges from 80% to 90% in both cases. In addition, the calculation time is much reduced compared to the requirement of PBM, which is its limitation in hydrological forecasting for large river basins such as the Red River in Vietnam. Therefore, SANN and LSTM are expected to help increase lead time, thereby supporting water resource management for sustainable development and management of water-related risks in the Red River Delta.展开更多
The relationship between climate change and water resources in the Tarim River was analyzed by combining the temperature,precipitation and streamflow data from 1957 to 2007 from the four headstreams of the Tarim River...The relationship between climate change and water resources in the Tarim River was analyzed by combining the temperature,precipitation and streamflow data from 1957 to 2007 from the four headstreams of the Tarim River (Aksu,Hotan,Yarkant and Kaidu rivers) in the study area.The long-term trend of the hydrological time series including temperature,precipitation and streamflow were studied using correlation analysis and partial correlations analysis.Holt double exponential smoothing was used to fit the trends between streamflow and the two climatic factors of Aksu River,Hotan River and Yarkant River.The streamflow of the main stream was forecasted by Autoregressive Integrated Moving Average Model (ARIMA) modeling by the method of time series analysis.The results show that the temperature experienced a trend of monotonic rising.The precipitation and runoff of the four headstreams of the Tarim River increased,while the inflow to the headstreams increased and the inflow into the Tarim River decreased.Changes of temperature and precipitation had a significant impact on runoff into the four headstreams of the Tarim River: the precipitation had a positive impact on water flow in the Aksu River,Hotan River and Kaidu River,while the temperature had a positive impact on water flow in the Yarkant River.The results of Holt double exponential smoothing showed that the correlation between the independent variable and dependent variable was relatively close after the model was fitted to the headstreams,of which only the runoff and temperature values of Hotan River showed a significant negative correlation.The forecasts by the ARIMA model for 50 years of annual runoff at the Allar station followed the pattern of the measured data for the same years.The short-term forecasts beyond the observed series adequately captured the pattern in the data and showed a decreasing tendency in the Tarim River flow of 3.07% every ten years.The results showed that global warming accelerated the water recharge process of the headstreams.The special hydrological characteristics of the arid area determined the significant association between streamflow and the two climatic factors studied.Strong glacier retreat is likely to bring a series of flood disasters within the study area.展开更多
As one of the largest countries in the world, China has a highest population and great potential in water resources and land. Water is a key issue for sustainable development in the fu-rure, because the average water ...As one of the largest countries in the world, China has a highest population and great potential in water resources and land. Water is a key issue for sustainable development in the fu-rure, because the average water and land availability per-capita is much lower than the world averages. Water resources assessment plays a very important role. However, certain problems could not be solved due to lack of hydrological data, such as groundwater in arid and semi-arid zones. Environment isotope technologies have been applied and show promise of wide application.展开更多
In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human a...In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.展开更多
基金National Natural Science Foundation of China, No.40671014Knowledge Innovation Project of the Chinese Academy of Sciences, No.KZCX2-YW-127+1 种基金Open Foundation of Key Laboratory of Oasis Ecology and De-sert Environment, CAS, No.200901-07Doctor Research Foundation of Xinjiang University, No.BS080131
文摘Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter-annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.
基金Supported by Natural Science Foundation of Jiangsu Province,China (BK2011096)Survey of National Soil Situation and Pollution Control (GZTR20070302)
文摘Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China.
基金jointly supported by the National Natural Science Foundation of China(41702280)the projects of the China Geology Survey(DD20221754 and DD20190333)。
文摘Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.
基金supported by the Major State Basic Research Development Program of China (973 Program) (Grant No. 2007CB411504 and 2007CB411507)the National Natural Science Foundation of China (Grant No. 40771047)
文摘The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin.
文摘Hydrological drought is usually characterised by water loss over time from both underground and surface supplies. Thus for this study, the assessment of hydrological drought was carried out by employing Cumulative Rainfall/Streamflow </span><span style="font-family:""><span style="font-family:Tahoma;">Anomaly as preliminary tools for the presence of drought signatures while detailed characterisation was via Streamflow Drought Index (SDI). The results revealed that hydrological drought was observed in all the stations;however, though in general, the stations could be classified as experiencing near normal drought conditions with mild drought signatures. The findings also revealed that the average streamflow deficit volume and durations of the hydrological drought severity were 1.780 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 192 months, 1.444 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, 3.148 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, and 0.159 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 372 months for Bakolori, Goronyo (pre dam construction era), Goronyo (post dam construction era) and Zobe stations, respectively. The results also revealed the relevance of flow duration curve and analysis of frequency of drought state transition for the development of scenario-based basin water resources management protocol. The coefficient of determination (R</span><sup><span style="font-family:Tahoma;">2</span></sup><span style="font-family:Tahoma;">) statistic of the developed regression models indicate that 73.3% and 86.5% variation in streamflow dynamics across the Basin can be explained by climate change variables. However, for sustainable management of water resources in the Basin, it is imperative that characterisation of hydrological drought and monitoring should employ robust indices which use improved monthly precipitation estimates under global warming scenario in addition to ensuring that there is a shift from reactive to proactive approach in order to combat hydrological risk. Hence, a robust framework that finds application both for planning mitigation actions which embody strategic, tactical and emergency components should be designed;to this end, analysis of persistence and recurrence of drought in time and determination of possible recurrent patterns are necessary.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20060402)the National Natural Science Foundation of China(41625001 and 41571022)+2 种基金the Pengcheng Scholar Program of Shenzhen,the National High-Level Talents Special Support Plan(“Ten Thousand Talents Plan”),the High-level Special Funding of the Southern University of Science and Technology(G02296302 and G02296402)the Leading Innovative Talent Program for young and middle-aged scholars by the Ministry of Science and Technologythe National Science Foundation(CAREER Award,1752729).
文摘The Lancang–Mekong River(LMR)is an important transboundary river that originates from the Qinghai–Tibet Plateau,China and flows through six nations before draining into the South China Sea.Knowledge about the past and future changes in climate and water for this basin is critical in order to support regio-nal sustainable development.This paper presents a comprehensive review of the scientific progress that has been made in understanding the changing climate and water systems,and discusses outstanding challenges and future research opportunities.The existing literature suggests that:①The warming rate in the Lancang–Mekong River Basin(LMRB)is higher than the mean global warming rate,and it is higher in its upper portion,the Lancang River Basin(LRB),than in its lower portion,the Mekong River Basin(MRB);②historical precipitation has increased over the LMRB,particularly from 1981 to 2010,as the wet season became wetter in the entire basin,while the dry season became wetter in the LRB but drier in the MRB;③in the past,streamflow increased in the LRB but slightly decreased in the MRB,and increases in streamflow are projected for the future in the LMRB;and④historical streamflow increased in the dry season but decreased in the wet season from 1960 to 2010,while a slight increase is projected during the wet season.Four research directions are identified as follows:①investigation of the impacts of dams on river flow and local communities;②implementation of a novel water–energy–food–ecology(WEFE)nexus;③integration of groundwater and human health management with water resource assessment and management;and④strengthening of transboundary collaboration in order to address sustainable development goals(SDGs).
文摘Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was conducted on the 5240 ha Turkey Creek watershed (WS 78) draining a 3rd order stream on the Santee Experimental Forest within the South Carolina Atlantic Coastal Plain, USA. The study objectives were to present the hydrologic characteristics of this relatively undisturbed, except by a hurricane (Hugo, 1989), forested water-shed and to discuss key elements for watershed management, including water resource assessment (WRM), modeling integrated water resources management, environmental assessment, land use planning, social impact assessment, and information management. Runoff coefficients, flow duration curves, flood and low flow frequency curves, surface and ground water yields were assessed as elements of the WRM. Results from the last 10 years of interdisciplinary studies have also advanced the understanding of coastal ecohydrologic characteristics and processes, water balance, and their modeling including the need of high resolution LiDAR data. For example, surface water dynamics were shown to be regulated primarily by the water table, dependent upon pre- cipitation and evapotranspiration (ET). Analysis of pre- and post-Hugo streamflow data showed somewhat lower but insignificant (α = 0.05) mean annual flow but increased frequency of larger flows for the post-Hugo compared with the pre-Hugo level. However, there was no significant difference in mean annual ET, potentially indicating the resiliency of this coastal forest. Although the information from this study may be useful for comparison of coastal ecohydrologic issues, it is becoming increasingly clear that multi-site studies may be warranted to understand these complex systems in the face of climate change, sea level rise, and increasing development in coastal regions.
基金supported by the National Basic Research Program of China(2010CB951002)the Dr.Western-funded Project of Chinese Academy of Science(XBBS201010 and XBBS201005)+1 种基金the National Natural Sciences Foundation of China (51190095)the Open Research Fund Program of State Key Laboratory of Hydro-science and Engineering(sklhse-2012-A03)
文摘This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty.
基金supported by the National Natural Science Foundation of China(Grants No.41330854 and 41371063)the National Key Research and Development Programs of China(Grants No.2016YFA0601601 and2016YFA0601501)
文摘Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') projections under the representative concentration pathway(RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to2050, with precipitation decrease in the 2020 s and increase in the 2030 s. The VIC model performs well for monthly discharge simulations with better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050 are projected to decrease by 2.76% on average within the range from-7.81% to 7.40%. It is essential to consider the potential impact of climate change on water resources in future planning for sustainable utilization of water resources.
基金This research was funded by projects of the National Natural Science Foundation of China(41702285)the National Geological Survey Project(121201106000150093)+1 种基金the National Natural Science Foundation of China(41807214)the Fundamental Scientific Research Funds from the Chinese Academy of Geological Sciences(No.SK202011).
文摘The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and human living conditions.Based on the results of 1∶250000 regional hydrogeological surveys and previous researches,this study systematically investigates the circulation characteristics and resource properties of the groundwater as well as the evolution of the climate and ecological environment since the Quaternary in the Badain Jaran Desert by means of geophysical exploration,hydrogeological drilling,hydrogeochemistry,and isotopic tracing.The results are as follows.(1)The groundwater in the Badain Jaran Desert is mainly recharged through the infiltration of local precipitation and has poor renewability.The groundwater recharge in the desert was calculated to be 1.8684×10^(8)m^(3)/a using the water balance method.(2)The Badain Jaran Desert has experienced four humid stages since the Quaternary,namely MIS 13-15,MIS 5,MIS 3,and the Early‒Middle Holocene,but the climate in the desert has shown a trend towards aridity overall.The average annual temperature in the Badain Jaran Desert has significantly increased in the past 50 years.In detail,it has increased by about 2.5℃,with a higher rate in the south than in the north.Meanwhile,the precipitation amount has shown high spatial variability and the climate has shown a warming-drying trend in the past 50 years.(3)The lakes in the hinterland of the Badain Jaran Desert continuously shrank during 1973‒2015.However,the vegetation communities maintained a highly natural distribution during 2000‒2016,with the vegetation cover has increased overall.Accordingly,the Badain Jaran Desert did not show any notable expansion in that period.This study deepens the understanding of groundwater circulation and the climate and ecological evolution in the Badain Jaran Desert.It will provide a scientific basis for the rational exploitation of the groundwater resources and the ecological protection and restoration in the Badain Jaran Desert.
文摘A detailed assessment on water resources of HNNR is to find the changing rules in time and space scale of water resources of HNNR and its adjacent areas, and the generating and degrading factors of wetland and provide scientific base on restoring and managing the hydrologic regime for planning and designing at HNNR. Both the assessment area and its adjacent watershed of Bielahong River belong to the same region in the climate and surface features. Total of 46 years of serial data from 1956 2001 in the Bielahong Hydrology Station was employed. Typical analysis of the serial runoff was conducted by adopting the residual mass curve method. The calculation methods of hydrological parameters are valuable for analyzing the water balance of HNNR. The results showed that the inputs of 118.29×10 6 m 3 of the surface runoff and 1 478km 2 of the areas of natural watershed in HNNR were decreased. At the same time some measurements to control and prevent water resources decreased have been proposed.
文摘This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development of this technology in the world was briefly reviewed and the distinction between land treatment and conventional wastewater irrigation was discussed in details. The fundamental characteristics and functions as well as the integrity and compatibility of this ecological engineering were also summarized. It was finally concluded that this technology for wastewater treatment has broad prospects of application in China.
文摘This research is concerned with new developments and practical applications of a physically-based numerical model that incorporates new approaches for a finite elements solution to the steady/transient problems of the joint ground/surface water flows. Python scripts are implemented in Geographic Information System (GIS) to store, represent and take decisions on the simulated conditions related to the water resources management at the scale of the watershed. The proposed surface-subsurface model considers surface and groundwater interactions to be 2-D horizontally distributed and depth-averaged through a diffusive wave approach for surface flood routing. Infiltration rates, overland flows and evapotranspiration processes are considered by a diffuse discharge from surface water, non-saturated subsoil and groundwater table. Recent developments also allow for the management of surface water flow control through the capacity of diversion on river beds, spillways and outflow operations of floodgates in weirs and dams of reservoirs. Practical application regards the actual hydrology of the Mero River watershed, with two important water bodies mainly concerned with the water resources management at the Cecebre Reservoir and the present flooding of a deep coal mining excavation. The MELEF model (Modèle d’éLéments Fluides, in French) was adapted and calibrated during a period of five years (2008/ 2012) with the help of hydrological parameters, registered flow rates, water levels and registered precipitation, water uses and water management operations in surface and groundwater bodies. The results predict the likely evolution of the Cecebre Reservoir, the flow rates in rivers, the flooding of the Meirama open pit and the local water balances for different hydrological components.
文摘Climate change impacts on water resources are expected to be significant in Yemen. Efforts have been made to understand the expected changes and develop mitigation possibilities for the expected scenarios for a future sustainable use of resources and mitigation of expected impacts. The paper describes the development of a detailed baseline database and the assessment of climate change and variability impacts on water resources over the 2030, 2050 and 2080 time horizon on a Yemen-wide scale. Based on downscaled Global Climate Model data, a range of scenarios were established, representing potential Mean, Warm & Wet and Hot & Dry conditions as derived by evaluating worst case scenarios from the ensemble of the global models for the specified years. The results of the model include an estimated runoff coefficient, monthly rainfall, runoff, infiltration and evaporation representing the water balance in the different catchments. Analysis of the different evaluated scenarios shows that in the Mid, Warm and Wet scenario the hydrological components are generally higher than in the baseline scenario. For the Hot & Dry scenario, runoff, infiltration and evapotranspiration are decreasing due to the decreasing precipitation and increase in temperature. The relative changes in runoff are strongest.
文摘1∶250 000 contour was used to generate 0. 0012°( 4. 32 s) of grid DEM of the basin,to simulate flow line of slope surface and gradient line,automatically draw valley line,and count catchment area at slope surface point. We organized data at the sections with 100 m of interval to simulate water system,establish coding system of river network,and build associated point with slope surface system. " Hillside hydrology" theory simulated subsurface flow between surface water and groundwater,and used catchment water at slope surface point,gradient,valley line and depletion curve to study soil moisture distribution in the basin.
文摘This paper examines the geomorphology and hydrology of the Benin Region, Edo State, Nigeria. The major landform features and processes of the region are highlighted. This region is a strategic and significant landscape in Nigeria. Information was gathered on the various aspects of the landscape, including the Geology, Physiography (Relief) and Geomorphology, Geomorphic processes, Weathering, Drainage processes, Landforms, Surface Water Hydrology and Water Resources. The Benin Region is underlained by sedimentary formation of the South Sedimentary Basin. The geology is generally marked by top reddish earth, composed of ferruginized or literalized clay sand. Geologically, the Benin Region comprises of 1) the Benin formation;2) alluvium;3) drift/top soil and 4) Azagba-Ogwashi (Asuba-Ogwashi) formation. Several parts of the region are surrounded by the Benin historical moats. The region has been described as a tilled plain in the south western direction. The local relief of the region is 91 m. Boreholes records in the Benin Region show evidence of deep chemical weathering overtime. Soil profile reveals that the region is composed mainly of reddish brown sandy laterite. Intermittent layers of porous sands of sandy clays may reach a large depth as found in the borehole drilled in the region. These are products of deep chemical decay of the original parent rock materials. Three river systems drain the Benin Region. They are the Ikpoba River, the Ogba River and Owigie-Ogbovben River systems. The mean annual discharge of Ikpoba River for 1982-1983 and 1993-2002 was 1411 mm/yr, which was 1.019 × 10<sup>9</sup> m<sup>3</sup> with a mean annual baseflow of 1256.23 mm (0. 907 × 109 m<sup>3</sup>). This constitutes 87.65% of the total flow. It has a mean annual surface runoff of 225.18 mm (0.112 × 10<sup>9</sup> m<sup>3</sup>) or 24.4 % of the total discharge. The water resources of the region include surface water and underground water.
文摘Hydrological forecasting plays an important role in water resource management, supporting socio-economic development and managing water-related risks in river basins. There are many flow forecasting techniques that have been developed several centuries ago, ranging from physical models, physics-based models, conceptual models, and data-driven models. Recently, Artificial Intelligence (AI) has become an advanced technique applied as an effective data-driven model in hydrological forecasting. The main advantage of these models is that they give results with compatible accuracy, and require short computation time, thus increasing forecasting time and reducing human and financial effort. This study evaluates the applicability of machine learning and deep learning in Hanoi water level forecasting where it is controlled for flood management and water supply in the Red River Delta, Vietnam. Accordingly, SANN (machine learning algorithm) and LSTM (deep learning algorithm) were tested and compared with a Physics-Based Model (PBM) for the Red River Delta. The results show that SANN and LSTM give high accuracy. The R-squared coefficient is greater than 0.8, the mean squared error (MSE) is less than 20 cm, the correlation coefficient of the forecast hydrology is greater than 0.9 and the level of assurance of the forecast plan ranges from 80% to 90% in both cases. In addition, the calculation time is much reduced compared to the requirement of PBM, which is its limitation in hydrological forecasting for large river basins such as the Red River in Vietnam. Therefore, SANN and LSTM are expected to help increase lead time, thereby supporting water resource management for sustainable development and management of water-related risks in the Red River Delta.
基金supported by the National Basic Research Program of China (2010CB951003)
文摘The relationship between climate change and water resources in the Tarim River was analyzed by combining the temperature,precipitation and streamflow data from 1957 to 2007 from the four headstreams of the Tarim River (Aksu,Hotan,Yarkant and Kaidu rivers) in the study area.The long-term trend of the hydrological time series including temperature,precipitation and streamflow were studied using correlation analysis and partial correlations analysis.Holt double exponential smoothing was used to fit the trends between streamflow and the two climatic factors of Aksu River,Hotan River and Yarkant River.The streamflow of the main stream was forecasted by Autoregressive Integrated Moving Average Model (ARIMA) modeling by the method of time series analysis.The results show that the temperature experienced a trend of monotonic rising.The precipitation and runoff of the four headstreams of the Tarim River increased,while the inflow to the headstreams increased and the inflow into the Tarim River decreased.Changes of temperature and precipitation had a significant impact on runoff into the four headstreams of the Tarim River: the precipitation had a positive impact on water flow in the Aksu River,Hotan River and Kaidu River,while the temperature had a positive impact on water flow in the Yarkant River.The results of Holt double exponential smoothing showed that the correlation between the independent variable and dependent variable was relatively close after the model was fitted to the headstreams,of which only the runoff and temperature values of Hotan River showed a significant negative correlation.The forecasts by the ARIMA model for 50 years of annual runoff at the Allar station followed the pattern of the measured data for the same years.The short-term forecasts beyond the observed series adequately captured the pattern in the data and showed a decreasing tendency in the Tarim River flow of 3.07% every ten years.The results showed that global warming accelerated the water recharge process of the headstreams.The special hydrological characteristics of the arid area determined the significant association between streamflow and the two climatic factors studied.Strong glacier retreat is likely to bring a series of flood disasters within the study area.
基金This work was supported by Water Resources Innovation Foundation (Grant No. SCX 2000-11) Jiangsu Natural Science Foundation (Grant No. BK99106). Prof. Gu Weizu provided valuable references and case studies on isotopic hydrology application.
文摘As one of the largest countries in the world, China has a highest population and great potential in water resources and land. Water is a key issue for sustainable development in the fu-rure, because the average water and land availability per-capita is much lower than the world averages. Water resources assessment plays a very important role. However, certain problems could not be solved due to lack of hydrological data, such as groundwater in arid and semi-arid zones. Environment isotope technologies have been applied and show promise of wide application.
基金This research was funded by the National Natural Science Foundation of China(U1603242)the Science and Technology Service Network Initiative(STS)Project in the Chinese Academy of Sciences(KFJ-STS-QYZD-071)+1 种基金the Training Program for Youth Innovative Talents in Science and Technology in Xinjiang Uygur Autonomous Regions(QN2016BS0052)the CAS"Light of West China"Program(2017-XBQNXZ-B-012).
文摘In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.