In the second term of 2019-2020,colleges and universities have launched a network teaching mode due to"novel coronavirus pneumonia"epidemic.The courses in colleges and universities are diversified due to the...In the second term of 2019-2020,colleges and universities have launched a network teaching mode due to"novel coronavirus pneumonia"epidemic.The courses in colleges and universities are diversified due to the difference of majors.For the Environmental Hydrology,students often show different degrees of interest in learning this course.Of course,each student s own situation is different.Teachers should consider a variety of factors in online classroom,pay more attention to students performance,and give appropriate guidance in time.展开更多
Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Prov...Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.展开更多
Effects of phosphorus(P)fertilizer application rate on soil transformation processes of P fraction are still unclear in the riparian zone.Purple alluvial soils in the riparian zone of the Three Gorges Reservoir were c...Effects of phosphorus(P)fertilizer application rate on soil transformation processes of P fraction are still unclear in the riparian zone.Purple alluvial soils in the riparian zone of the Three Gorges Reservoir were collected to conduct a 21-day incubation executed by two hydrological environments(drying and flooding)and ten application rates of P fertilizer.Transformation percentages of P fertilizer(TPPF)were calculated as content differences of soil P fractions between fertilizer addition and none fertilizer addition divided by soil total P increases caused by fertilizer addition.TPPF to inorganic P extracted by sodium hydroxide(NaOH-Pi)and hydrochloric acid(HCl-Pi)increase by 20.91%(9.71%)and 24.26%(40.72%)under the drying(flooding)environment.Instead,TPPF to the other fractions decrease.Phosphorus fertilizer input mainly has indirect positive and negative effects on organic P via precipitated P under the drying and flooding environments and finally has indirect positive effects on labile P(p<0.001).Percentage changes of water-soluble inorganic P(H2O-Pi)and HCl-Pi under the flooding environment are higher than that under the drying environment,and percentage changes of organic P extracted by sodium hydrogen carbonate(Na HCO3-Po)and NaOH-Pi show an opposite trend(p<0.01).?(differences in soil P fraction content between flooding and drying incubations)H2O-Pi is negatively correlated with?NaHCO3-Po,and?NaHCO3-Po is positively correlated with?NaOH-Pi(p<0.001).In conclusion,P fertilizer is transformed more into precipitated P than into other P fractions with an application rate increase.Phosphorus fertilizer input mainly increases organic P via precipitated P under the drying environment and decreases organic P via precipitated P under the flooding environment,and organic P is further transformed into labile P.With P fertilizer input,P release caused by flooding is derived from NaHCO3-Po release triggered by NaOH-Pi release.The results can be helpful for the understanding of P fertilizer migration processes from the riparian zone soil to the Three Gorges Reservoir under rain leaching and flooding.展开更多
Based on the comprehensive analyses of 18 core profiles’sedimentary sequences and lithological characteristics in Jianghan-Dongting Basin of the middle reaches of the Yangtze River and the spatial-temporal distributi...Based on the comprehensive analyses of 18 core profiles’sedimentary sequences and lithological characteristics in Jianghan-Dongting Basin of the middle reaches of the Yangtze River and the spatial-temporal distribution of archeological sites in this area,we reconstructed the Holocene hydro-environmental evolution,and its relationship with human occupation.The comparison reveals:11.5–5.5 ka BP,the water level of rivers and lakes in the middle Yangtze River appeared a rising trend,concurrently,under the development of Neolithic culture and rice agricultural activities,human occupation extended from piedmont plain to inner basin plain in the study area.The water level fell in 5.5–4.0 ka BP,meanwhile,the number of human settlements of Qujialing-Shijiahe culture rapidly increased,especially in the inner basin plain.The water level rose again around 4.0 ka BP,floods spread massively in this period,which led to the decline of Shijiahe culture.The main causes for hydro-environmental evolution in the study area are the fluctuation of sea level and the aggradation of fluvio-lacustrine sediments.展开更多
基金Supported by the Project of Education Department of Guangdong Province:"Foshan University-Chinese Academy of Sciences Innovation and Entrepreneurship Base for College Students in Dinghushan Nature Reserve""Scientific Research Project and Achievements Cultivation-Education Reform Cultivation Project of Guangdong High-level Universities of Science and Technology"of Foshan University.
文摘In the second term of 2019-2020,colleges and universities have launched a network teaching mode due to"novel coronavirus pneumonia"epidemic.The courses in colleges and universities are diversified due to the difference of majors.For the Environmental Hydrology,students often show different degrees of interest in learning this course.Of course,each student s own situation is different.Teachers should consider a variety of factors in online classroom,pay more attention to students performance,and give appropriate guidance in time.
基金jointly supported by the National Natural Science Foundation of China(41702280)the projects of the China Geology Survey(DD20221754 and DD20190333)。
文摘Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.
基金supported by the Program of Chongqing Science and Technology Commission(cstc2020jcyj-msxmX0095)the Chongqing Municipal Key Laboratory of Institutions of Higher Education(WEPKL2018ZD-05)+2 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZDK202001203,KJZDK202003501)the Innovative Research Group of Universities in Chongqing(CXQTP19037)the Sustainable Development Research Centre of Three Gorges Reservoir Area(18sxxyjd11)。
文摘Effects of phosphorus(P)fertilizer application rate on soil transformation processes of P fraction are still unclear in the riparian zone.Purple alluvial soils in the riparian zone of the Three Gorges Reservoir were collected to conduct a 21-day incubation executed by two hydrological environments(drying and flooding)and ten application rates of P fertilizer.Transformation percentages of P fertilizer(TPPF)were calculated as content differences of soil P fractions between fertilizer addition and none fertilizer addition divided by soil total P increases caused by fertilizer addition.TPPF to inorganic P extracted by sodium hydroxide(NaOH-Pi)and hydrochloric acid(HCl-Pi)increase by 20.91%(9.71%)and 24.26%(40.72%)under the drying(flooding)environment.Instead,TPPF to the other fractions decrease.Phosphorus fertilizer input mainly has indirect positive and negative effects on organic P via precipitated P under the drying and flooding environments and finally has indirect positive effects on labile P(p<0.001).Percentage changes of water-soluble inorganic P(H2O-Pi)and HCl-Pi under the flooding environment are higher than that under the drying environment,and percentage changes of organic P extracted by sodium hydrogen carbonate(Na HCO3-Po)and NaOH-Pi show an opposite trend(p<0.01).?(differences in soil P fraction content between flooding and drying incubations)H2O-Pi is negatively correlated with?NaHCO3-Po,and?NaHCO3-Po is positively correlated with?NaOH-Pi(p<0.001).In conclusion,P fertilizer is transformed more into precipitated P than into other P fractions with an application rate increase.Phosphorus fertilizer input mainly increases organic P via precipitated P under the drying environment and decreases organic P via precipitated P under the flooding environment,and organic P is further transformed into labile P.With P fertilizer input,P release caused by flooding is derived from NaHCO3-Po release triggered by NaOH-Pi release.The results can be helpful for the understanding of P fertilizer migration processes from the riparian zone soil to the Three Gorges Reservoir under rain leaching and flooding.
基金The Major Program of the National Social Science Foundation of China,No.11&ZD183Foundation for Distinguished Professors of Henan Province+2 种基金Zhengzhou Research Council for the Origins of Chinese CivilizationNational Key Project of Scientific and Technical Supporting Program of China,No.2013BAK08B02National Natural Science Foundation of China,No.41701220。
文摘Based on the comprehensive analyses of 18 core profiles’sedimentary sequences and lithological characteristics in Jianghan-Dongting Basin of the middle reaches of the Yangtze River and the spatial-temporal distribution of archeological sites in this area,we reconstructed the Holocene hydro-environmental evolution,and its relationship with human occupation.The comparison reveals:11.5–5.5 ka BP,the water level of rivers and lakes in the middle Yangtze River appeared a rising trend,concurrently,under the development of Neolithic culture and rice agricultural activities,human occupation extended from piedmont plain to inner basin plain in the study area.The water level fell in 5.5–4.0 ka BP,meanwhile,the number of human settlements of Qujialing-Shijiahe culture rapidly increased,especially in the inner basin plain.The water level rose again around 4.0 ka BP,floods spread massively in this period,which led to the decline of Shijiahe culture.The main causes for hydro-environmental evolution in the study area are the fluctuation of sea level and the aggradation of fluvio-lacustrine sediments.