Cars are regarded as an indispensable means of transportation in Taiwan.Several studies have indicated that the automotive industry has witnessed remarkable advances and that the market of used cars has rapidly expand...Cars are regarded as an indispensable means of transportation in Taiwan.Several studies have indicated that the automotive industry has witnessed remarkable advances and that the market of used cars has rapidly expanded.In this study,a price prediction system for used BMW cars was developed.Nine parameters of used cars,including their model,registration year,and transmission style,were analyzed.The data obtained were then divided into three subsets.The first subset was used to compare the results of each algorithm.The predicted values produced by the two algorithms with the most satisfactory results were used as the input of a fully connected neural network.The second subset was used with an optimization algorithm to modify the number of hidden layers in a fully connected neural network and modify the low,medium,and high parameters of the membership function(MF)to achieve model optimization.Finally,the third subset was used for the validation set during the prediction process.These three subsets were divided using k-fold cross-validation to avoid overfitting and selection bias.In conclusion,in this study,a model combining two optimal algorithms(i.e.,random forest and k-nearest neighbors)with several optimization algorithms(i.e.,gray wolf optimizer,multilayer perceptron,and MF)was successfully established.The prediction results obtained indicated a mean square error of 0.0978,a root-mean-square error of 0.3128,a mean absolute error of 0.1903,and a coefficient of determination of 0.9249.展开更多
The software engineering field has long focused on creating high-quality software despite limited resources.Detecting defects before the testing stage of software development can enable quality assurance engineers to ...The software engineering field has long focused on creating high-quality software despite limited resources.Detecting defects before the testing stage of software development can enable quality assurance engineers to con-centrate on problematic modules rather than all the modules.This approach can enhance the quality of the final product while lowering development costs.Identifying defective modules early on can allow for early corrections and ensure the timely delivery of a high-quality product that satisfies customers and instills greater confidence in the development team.This process is known as software defect prediction,and it can improve end-product quality while reducing the cost of testing and maintenance.This study proposes a software defect prediction system that utilizes data fusion,feature selection,and ensemble machine learning fusion techniques.A novel filter-based metric selection technique is proposed in the framework to select the optimum features.A three-step nested approach is presented for predicting defective modules to achieve high accuracy.In the first step,three supervised machine learning techniques,including Decision Tree,Support Vector Machines,and Naïve Bayes,are used to detect faulty modules.The second step involves integrating the predictive accuracy of these classification techniques through three ensemble machine-learning methods:Bagging,Voting,and Stacking.Finally,in the third step,a fuzzy logic technique is employed to integrate the predictive accuracy of the ensemble machine learning techniques.The experiments are performed on a fused software defect dataset to ensure that the developed fused ensemble model can perform effectively on diverse datasets.Five NASA datasets are integrated to create the fused dataset:MW1,PC1,PC3,PC4,and CM1.According to the results,the proposed system exhibited superior performance to other advanced techniques for predicting software defects,achieving a remarkable accuracy rate of 92.08%.展开更多
This research investigates the dielectric performance of Natural Ester(NE)using the Partial Differential Equation(PDE)tool and analyzes dielectric performance using fuzzy logic.NE nowadays is found to replace Mineral ...This research investigates the dielectric performance of Natural Ester(NE)using the Partial Differential Equation(PDE)tool and analyzes dielectric performance using fuzzy logic.NE nowadays is found to replace Mineral Oil(MO)due to its extensive dielectric properties.Here,the heat-tolerant Natural Esters Olive oil(NE1),Sunflower oil(NE2),and Ricebran oil(NE3)are subjected to High Voltage AC(HVAC)under different electrodes configurations.The break-down voltage and leakage current of NE1,NE2,and NE3 under Point-Point(P-P),Sphere-Sphere(S-S),Plane-Plane(PL-PL),and Rod-Rod(R-R)are measured,and survival probability is presented.The electricfield distribution is analyzed using the Partial Differential Equation(PDE)tool.NE shows better HVAC with stand capacity under all the electrodes configuration,especially in the S-S shape geometry.The exponential function is developed for the oils under different elec-trode geometry;NE shows a higher survival probability.Likewise,the most influ-ential dielectric properties such as breakdown voltage,kinematic viscosity,and water content are used to develop a Mamdani-based control system model that combines two variables to produce the surface model.The surface model indi-cates that the NE subjected for investigation is less susceptible to moisture effect and higher kinematic viscosity.Based on the surface models of PDE and fuzzy,it is concluded that NE possesses a high survival rate since its breakdown voltage does not react to changes in water content.Hence the application of NE in the transformer application is highly safe and possesses extended life.展开更多
Welding defects influence the desired properties of welded joints giving fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. In this study, the fuz...Welding defects influence the desired properties of welded joints giving fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. In this study, the fuzzy logic system was employed to predict welding tensile strength. 30 sets of welding experiments were conducted and tensile strength data was collected which were converted from crisp variables into fuzzy sets. The result showed that the fuzzy logic tool is a highly effective tool for predicting tensile strength present in TIG mild steel weld having a coefficient of determination value of 99%.展开更多
Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop cont...Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.展开更多
This paper presents the improvement of the fuzzy inference model for predicting rainfall. Fuzzy rule based system is used in this study to predict rainfall. Fuzzy inference is the actual procedure of mapping with a gi...This paper presents the improvement of the fuzzy inference model for predicting rainfall. Fuzzy rule based system is used in this study to predict rainfall. Fuzzy inference is the actual procedure of mapping with a given set of input and output through a set of fuzzy systems. Two operations were performed on the fuzzy logic model;the fuzzification operation and defuzzification operation. This study is obtaining two input variables and one output variable. The input variables are temperature and wind speed at a particular time and output variable is the amount of predictable rainfall. Temperature, wind speed and rainfall have to construct eight equations for different categories and which are shows the diagram of the graph. Fuzzy levels and membership functions obtained after minimum composition of inference part of the fuzzifications done for temperature and wind speed are considered as they represent the environmental condition enhance a rainfall occurrence which is effect on agricultural production.展开更多
Power control is of paramount importance in combating the near-far problem and co-channel interference in a CDMA cellular system. Due to fast fading and ambient interference in a wireless channel, conventional fixed-s...Power control is of paramount importance in combating the near-far problem and co-channel interference in a CDMA cellular system. Due to fast fading and ambient interference in a wireless channel, conventional fixed-step power control schemes have difficulty in compensating for the fast fading channel dynamically and in a timely manner. To acquire flexible power regulation in order to maintain required transmission capacity under the given transmission quality requirement, we propose a hybrid power control scheme which makes full use of the simple fuzzy inference rule refined by an operator in the fuzzy control and prediction property from related previous results in Generalized Prediction Control (GPC). In implementation of this strategy, we classify the fading zone into three levels according to the signal-to-noise-rate (SNR) requirement. In each level the power compensation amount varies with fading gradient and the compensation scheme varies as well. The digital results show that adoption of the fuzzy-GPC power regulation scheme has acquired a reasonable performance improvement when compared with fixed-step and fuzzy schemes. According to theoretic analysis and simulation results, we can conclude that under a variational transmission environment, a flexible power regulation scheme such as fuzzy-GPC is easy to adapt to the environment and thus overcomes the near-far effect and multi-access interference effectively.展开更多
The requirement for high-quality seafood is a global challenge in today’s world due to climate change and natural resource limitations.Internet of Things(IoT)based Modern fish farming systems can significantly optimi...The requirement for high-quality seafood is a global challenge in today’s world due to climate change and natural resource limitations.Internet of Things(IoT)based Modern fish farming systems can significantly optimize seafood production by minimizing resource utilization and improving healthy fish production.This objective requires intensive monitoring,prediction,and control by optimizing leading factors that impact fish growth,including temperature,the potential of hydrogen(pH),water level,and feeding rate.This paper proposes the IoT based predictive optimization approach for efficient control and energy utilization in smart fish farming.The proposed fish farm control mechanism has a predictive optimization to deal with water quality control and efficient energy consumption problems.Fish farm indoor and outdoor values are applied to predict the water quality parameters,whereas a novel objective function is proposed to achieve an optimal fish growth environment based on predicted parameters.Fuzzy logic control is utilized to calculate control parameters for IoT actuators based on predictive optimal water quality parameters by minimizing energy consumption.To evaluate the efficiency of the proposed system,the overall approach has been deployed to the fish tank as a case study,and a number of experiments have been carried out.The results show that the predictive optimization module allowed the water quality parameters to be maintained at the optimal level with nearly 30%of energy efficiency at the maximum actuator control rate compared with other control levels.展开更多
Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (ML...Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.展开更多
基金This work was supported by the Ministry of Science and Technology,Taiwan,under Grants MOST 111-2218-E-194-007.
文摘Cars are regarded as an indispensable means of transportation in Taiwan.Several studies have indicated that the automotive industry has witnessed remarkable advances and that the market of used cars has rapidly expanded.In this study,a price prediction system for used BMW cars was developed.Nine parameters of used cars,including their model,registration year,and transmission style,were analyzed.The data obtained were then divided into three subsets.The first subset was used to compare the results of each algorithm.The predicted values produced by the two algorithms with the most satisfactory results were used as the input of a fully connected neural network.The second subset was used with an optimization algorithm to modify the number of hidden layers in a fully connected neural network and modify the low,medium,and high parameters of the membership function(MF)to achieve model optimization.Finally,the third subset was used for the validation set during the prediction process.These three subsets were divided using k-fold cross-validation to avoid overfitting and selection bias.In conclusion,in this study,a model combining two optimal algorithms(i.e.,random forest and k-nearest neighbors)with several optimization algorithms(i.e.,gray wolf optimizer,multilayer perceptron,and MF)was successfully established.The prediction results obtained indicated a mean square error of 0.0978,a root-mean-square error of 0.3128,a mean absolute error of 0.1903,and a coefficient of determination of 0.9249.
基金supported by the Center for Cyber-Physical Systems,Khalifa University,under Grant 8474000137-RC1-C2PS-T5.
文摘The software engineering field has long focused on creating high-quality software despite limited resources.Detecting defects before the testing stage of software development can enable quality assurance engineers to con-centrate on problematic modules rather than all the modules.This approach can enhance the quality of the final product while lowering development costs.Identifying defective modules early on can allow for early corrections and ensure the timely delivery of a high-quality product that satisfies customers and instills greater confidence in the development team.This process is known as software defect prediction,and it can improve end-product quality while reducing the cost of testing and maintenance.This study proposes a software defect prediction system that utilizes data fusion,feature selection,and ensemble machine learning fusion techniques.A novel filter-based metric selection technique is proposed in the framework to select the optimum features.A three-step nested approach is presented for predicting defective modules to achieve high accuracy.In the first step,three supervised machine learning techniques,including Decision Tree,Support Vector Machines,and Naïve Bayes,are used to detect faulty modules.The second step involves integrating the predictive accuracy of these classification techniques through three ensemble machine-learning methods:Bagging,Voting,and Stacking.Finally,in the third step,a fuzzy logic technique is employed to integrate the predictive accuracy of the ensemble machine learning techniques.The experiments are performed on a fused software defect dataset to ensure that the developed fused ensemble model can perform effectively on diverse datasets.Five NASA datasets are integrated to create the fused dataset:MW1,PC1,PC3,PC4,and CM1.According to the results,the proposed system exhibited superior performance to other advanced techniques for predicting software defects,achieving a remarkable accuracy rate of 92.08%.
文摘This research investigates the dielectric performance of Natural Ester(NE)using the Partial Differential Equation(PDE)tool and analyzes dielectric performance using fuzzy logic.NE nowadays is found to replace Mineral Oil(MO)due to its extensive dielectric properties.Here,the heat-tolerant Natural Esters Olive oil(NE1),Sunflower oil(NE2),and Ricebran oil(NE3)are subjected to High Voltage AC(HVAC)under different electrodes configurations.The break-down voltage and leakage current of NE1,NE2,and NE3 under Point-Point(P-P),Sphere-Sphere(S-S),Plane-Plane(PL-PL),and Rod-Rod(R-R)are measured,and survival probability is presented.The electricfield distribution is analyzed using the Partial Differential Equation(PDE)tool.NE shows better HVAC with stand capacity under all the electrodes configuration,especially in the S-S shape geometry.The exponential function is developed for the oils under different elec-trode geometry;NE shows a higher survival probability.Likewise,the most influ-ential dielectric properties such as breakdown voltage,kinematic viscosity,and water content are used to develop a Mamdani-based control system model that combines two variables to produce the surface model.The surface model indi-cates that the NE subjected for investigation is less susceptible to moisture effect and higher kinematic viscosity.Based on the surface models of PDE and fuzzy,it is concluded that NE possesses a high survival rate since its breakdown voltage does not react to changes in water content.Hence the application of NE in the transformer application is highly safe and possesses extended life.
文摘Welding defects influence the desired properties of welded joints giving fabrication experts a common problem of not being able to produce weld structures with optimal strength and quality. In this study, the fuzzy logic system was employed to predict welding tensile strength. 30 sets of welding experiments were conducted and tensile strength data was collected which were converted from crisp variables into fuzzy sets. The result showed that the fuzzy logic tool is a highly effective tool for predicting tensile strength present in TIG mild steel weld having a coefficient of determination value of 99%.
基金supported by the Major Science and Technology Projects of Gansu Province(Grant No.20ZD7GF011)Gansu Province Higher Education Industry Support Plan Project:Research on the Collaborative Operation of Solar Thermal Storage+Wind-Solar Hybrid Power Generation--Based on“Integrated Energy Demonstration of Wind-Solar Energy Storage in Gansu Province”(Project No.2022CYZC-34).
文摘Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.
文摘This paper presents the improvement of the fuzzy inference model for predicting rainfall. Fuzzy rule based system is used in this study to predict rainfall. Fuzzy inference is the actual procedure of mapping with a given set of input and output through a set of fuzzy systems. Two operations were performed on the fuzzy logic model;the fuzzification operation and defuzzification operation. This study is obtaining two input variables and one output variable. The input variables are temperature and wind speed at a particular time and output variable is the amount of predictable rainfall. Temperature, wind speed and rainfall have to construct eight equations for different categories and which are shows the diagram of the graph. Fuzzy levels and membership functions obtained after minimum composition of inference part of the fuzzifications done for temperature and wind speed are considered as they represent the environmental condition enhance a rainfall occurrence which is effect on agricultural production.
文摘Power control is of paramount importance in combating the near-far problem and co-channel interference in a CDMA cellular system. Due to fast fading and ambient interference in a wireless channel, conventional fixed-step power control schemes have difficulty in compensating for the fast fading channel dynamically and in a timely manner. To acquire flexible power regulation in order to maintain required transmission capacity under the given transmission quality requirement, we propose a hybrid power control scheme which makes full use of the simple fuzzy inference rule refined by an operator in the fuzzy control and prediction property from related previous results in Generalized Prediction Control (GPC). In implementation of this strategy, we classify the fading zone into three levels according to the signal-to-noise-rate (SNR) requirement. In each level the power compensation amount varies with fading gradient and the compensation scheme varies as well. The digital results show that adoption of the fuzzy-GPC power regulation scheme has acquired a reasonable performance improvement when compared with fixed-step and fuzzy schemes. According to theoretic analysis and simulation results, we can conclude that under a variational transmission environment, a flexible power regulation scheme such as fuzzy-GPC is easy to adapt to the environment and thus overcomes the near-far effect and multi-access interference effectively.
基金funded by the Ministry of Science,ICT CMC,202327(2019M3F2A1073387)this work was supported by the Institute for Information&communications Technology Promotion(IITP)(NO.2022-0-00980,Cooperative Intelligence Framework of Scene Perception for Autonomous IoT Device).
文摘The requirement for high-quality seafood is a global challenge in today’s world due to climate change and natural resource limitations.Internet of Things(IoT)based Modern fish farming systems can significantly optimize seafood production by minimizing resource utilization and improving healthy fish production.This objective requires intensive monitoring,prediction,and control by optimizing leading factors that impact fish growth,including temperature,the potential of hydrogen(pH),water level,and feeding rate.This paper proposes the IoT based predictive optimization approach for efficient control and energy utilization in smart fish farming.The proposed fish farm control mechanism has a predictive optimization to deal with water quality control and efficient energy consumption problems.Fish farm indoor and outdoor values are applied to predict the water quality parameters,whereas a novel objective function is proposed to achieve an optimal fish growth environment based on predicted parameters.Fuzzy logic control is utilized to calculate control parameters for IoT actuators based on predictive optimal water quality parameters by minimizing energy consumption.To evaluate the efficiency of the proposed system,the overall approach has been deployed to the fish tank as a case study,and a number of experiments have been carried out.The results show that the predictive optimization module allowed the water quality parameters to be maintained at the optimal level with nearly 30%of energy efficiency at the maximum actuator control rate compared with other control levels.
文摘Because model switching system is a typical form of Takagi-Sugeno(T-S) model which is an universal approximator of continuous nonlinear systems, we describe the model switching system as mixed logical dynamical (MLD) system and use it in model predictive control (MPC) in this paper. Considering that each local model is only valid in each local region,we add local constraints to local models. The stability of proposed multi-model predictive control (MMPC) algorithm is analyzed, and the performance of MMPC is also demonstrated on an inulti-multi-output(MIMO) simulated pH neutralization process.