In this paper,morphological structure,thermodynamic compatibility and relationship be-tween porosities and blend ratios of the wet coagulated PU/PVA sheets were studied by meansof observation of scanning electronic mi...In this paper,morphological structure,thermodynamic compatibility and relationship be-tween porosities and blend ratios of the wet coagulated PU/PVA sheets were studied by meansof observation of scanning electronic micrographies,tests of dynamic mechanical properties,moisture regain and vapor permeability.Furthermore,the formation of microvoids at interfacesof separated phases was discussed and a microvoid formation mechanism at phase interfaces ofhydrophobic-hydrophilic blends was suggested and compared with that ofhydrophobic-hydrophobic blends.展开更多
The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR inv...The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.展开更多
Multidrug resistant(MDR) pathogen infections are serious threats to hospitalized patients because of the limited therapeutic options. A novel group of antibiotic candidates, antimicrobial peptides(AMPs), have rece...Multidrug resistant(MDR) pathogen infections are serious threats to hospitalized patients because of the limited therapeutic options. A novel group of antibiotic candidates, antimicrobial peptides(AMPs), have recently shown powerful activities against both Gram-negative and Gram-positive bacteria. Unfortunately, the viability of using these AMPs in clinical settings remains to be seen, since most still need to be evaluated prior to clinical trials and not all of AMPs are potent against MDR clinical isolates. To find a connection between the characteristics of several of these AMPs and their effects against MDR pathogens, we selected 14 AMPs of animal origin with typical structures and evaluated their in vitro activities against clinical strains of extensive drugresistant Acinetobacter baumannii, methicillinresistant Staphylococcus aureus, extended spectrum β-lactamase-producing Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli. Our results showed that these peptides' hydrophilic/hydrophobic characteristics, rather than their secondary structures, may explain their antibacterial effects on these clinical isolates. Peptides that are amphipathic along the longitudinal direction seemed to be effective against Gramnegative pathogens, while peptides with hydrophilic terminals separated by a hydrophobic intermediate section appeared to be effective against both Gramnegative and Gram-positive pathogens. Among these, cathelicidin-BF was found to inhibit all of the Gram-negative pathogens tested at dosages of no more than 16 mg/L, killing a pandrug-resistant A. baumannii strain within 2 h at 4×MICs and 4 h at 2×MICs. Tachyplesin III was also found capable of inhibiting all Gram-negative and Gram-positive pathogens tested at no more than 16 mg/L, and similarly killed the same A. baumannii strain within 4 h at 4×MICs and 2×MICs. These results suggest that both cathelicidin-BF and tachyplesin III are likely viable targets for the development of AMPs for clinical uses.展开更多
AIM: To conduct a Meta-analysis pooling randomized controlled trials(RCTs) to compare hydrophobic with hydrophilic acrylic intraocular lenses in terms of posterior capsule opacification(PCO) development.METHODS: Elect...AIM: To conduct a Meta-analysis pooling randomized controlled trials(RCTs) to compare hydrophobic with hydrophilic acrylic intraocular lenses in terms of posterior capsule opacification(PCO) development.METHODS: Electronic databases including PubMed,Embase, and the Cochrane Library were queried from their starting till January 2020. RCTs investigating the impact of hydrophobic versus hydrophilic acrylic intraocular lenses on PCO were considered eligible in this study. The pooled effect estimates were calculated using the random-effects model.RESULTS: Thirteen RCTs comprising of 939 patients(1263 eyes) were covered in this study. Patients with hydrophobic acrylic intraocular lenses had a lower PCO score than those with a hydrophilic acrylic intraocular lenses [standard mean difference:-1.80;95% confidence interval(CI):-2.62 to-0.98;P<0.001]. Moreover, the frequency of neodymium-doped yttrium aluminum garnet(Nd:YAG)capsulotomy in patients with hydrophobic acrylic intraocular lenses was significantly lower than patients with hydrophilic acrylic intraocular lenses(relative risk: 0.38;95%CI: 0.20-0.71;P=0.003).CONCLUSION: These findings suggest that hydrophobic acrylic intraocular lenses are superior to hydrophilic acrylic intraocular lenses in patients after cataract surgery due to lower PCO score and reduced Nd:YAG capsulotomy. While similar studies are conducted by other researchers, the present study conducted subgroup analyses that show superior results with hydrophobic lenses in trials conducted in western countries.展开更多
A hydrophobic-hydrophilic gradient rod with a length of 40 mm and a diameter of 3 mm was prepared by heating a polymethylsilsesquioxane rod in a cylindrical stove with temperature gradient. The rod was thus pyrolyzed ...A hydrophobic-hydrophilic gradient rod with a length of 40 mm and a diameter of 3 mm was prepared by heating a polymethylsilsesquioxane rod in a cylindrical stove with temperature gradient. The rod was thus pyrolyzed under a temperature gradient condition. The organic end of the gradient rod appears hydrophobic with a contact angle of 109.9° while the other end is hydrophilic with a contact angle of 62.4°. The gradient chemical structure and the gradient microstructure along the rod were characterized by FTIR and SEM, respectively.展开更多
A new metal-organic framework based on ethyl 1H-tetrazole-5-acetate (Hetza), [Ag4(etza)4] (1), has been synthesized and characterized by elemental analysis, IR, thermal gravimetric and X-ray structural analysis....A new metal-organic framework based on ethyl 1H-tetrazole-5-acetate (Hetza), [Ag4(etza)4] (1), has been synthesized and characterized by elemental analysis, IR, thermal gravimetric and X-ray structural analysis. Crystal data for the title complex are as follows: triclinic system, space group P1 with a = 11.0771(6), b = 11.6636(6), c = 13.2925(8), a = 102.3710(10), β =103.3810(10), γ = 90.0890(10)°, V = 1629.60(16) A3, Mr = 1052.06, Z = 2, F(000) = 1024, Dc = 2.144 g/cm3, μ(MoKa) = 2.438 mm^-1, the final R = 0.0538 and wR = 0.1475 (I 〉 2σ(I)). Complex 1 adopts the (4.82) topological network and the alternately hydrophilic-hydrophilic and hydropho- bic-hydrophobic arrangements. The luminescent properties of complex 1 and the free Hetza ligand have been studied in the solid states.展开更多
A hydrophilic/hydrophobic interpenetrating polymer network (IPN) of poly (vinyl alcohol) / polystyrene was prepared by conversion of the IPN of poly (vinyl acetate)/polystyrene. The hydrophilic/hydrophobic IPN w...A hydrophilic/hydrophobic interpenetrating polymer network (IPN) of poly (vinyl alcohol) / polystyrene was prepared by conversion of the IPN of poly (vinyl acetate)/polystyrene. The hydrophilic/hydrophobic IPN was characterized by FT-IR and DSC, and the swelling ratios of the IPN in different solvents were measured.展开更多
Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modi...Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modified cross-linked dextran(Sephadex,S0)was fabricated by respectively grafting with linear alkyl chains,branched alkyl chains or aromatic chain,and acted as DDSs after ibuprofen(Ibu)loading for OA therapy.This DDSs expressed sustained drug release,excellent anti-inflammatory and chondroprotective effects both in IL-1βinduced chondrocytes and OA joints.Specifically,the introduction of a longer hydrophobic chain,particularly an aromatic chain,distinctly improved the hydrophobicity of S0,increased Ibu loading efficiency,and further led to significantly improving OA therapeutic effects.Therefore,hydrophobic microspheres with greatly improved drug loading ratio and prolonged degradation rates show great potential to act as DDSs for OA therapy.展开更多
Copolymerization of chitosan selectively grafted by polyethylene glycol was prepared. Chitosan was selectively grafted by monomethoxy polyethylene glycol(mPEG-OH), which contained a hydroxyl group combining with hex...Copolymerization of chitosan selectively grafted by polyethylene glycol was prepared. Chitosan was selectively grafted by monomethoxy polyethylene glycol(mPEG-OH), which contained a hydroxyl group combining with hexamethylene diisocyanate(HDI) to form a novel macromonomer namely monomethoxy polyethylene glycol isocyanate(mPEG-NCO) containing a isocyanate group with higher chemical activity in ethyl glyoxalate solution absolutely without water. The selective grafted copolymerization of Chitosan with mPEG-NCO was conducted under heterogeneous conditions as suspension in dimethylformamide. The hydrophilic copolymers of chitosan were prepared by condensation reaction of isocyanate group on mPEG- NCO with hydroxy groups on chitosan chains because amino groups on chitosan chains were protected by complexion formation with copper ions. The effect of reaction condition on the grafting extents was discussed. Swelling properties of mPEG-g-CS were researched. The graft copolymer mPEG-g-CS was characterized by the infrared spectra. The experimental result showed that the copper ions were very effective to protect amino groups from condensation reaction. The swelling degree in water increases with adding of grafting ratio. The maximum swelling degree was up to above 132% when the grafting ratio was about 270%. The graft copolymer can be soluble partially in pure water.展开更多
Owing to the spread of COVID-19,it is difficult to ignore the existence and importance of antimicrobial polymers(AMPs)because most protective appliances are made of polymers.Generally,bacteria prefer hydrophilic compo...Owing to the spread of COVID-19,it is difficult to ignore the existence and importance of antimicrobial polymers(AMPs)because most protective appliances are made of polymers.Generally,bacteria prefer hydrophilic compounds,while fungi prefer hydrophobic ones.In recent decades,AMPs have made significant strides due to the versatile design of the functional groups or units for hydrophilic,hydrophobic,or amphiphilic performances.This review summarizes the advances of AMPs itself from the perspective of their wettability.Moreover,this study aims to clarify how the functional groups determine the interaction between the polymer and microorganisms directly affects the antimicrobial efficacy of the designed polymers.Based on the advances,the challenges and outlooks of AMPs from the perspective of wettability are systematically discussed to build a bridge between the structural design of AMPs and the requirements of practical applications.展开更多
It is of great significance to synthesize carbon dots(CDs)with desirable hydrophilicity for the ever-growing application of CDs in different fields.In this study,the hydrophilic and hydrophobic CDs were facilely prepa...It is of great significance to synthesize carbon dots(CDs)with desirable hydrophilicity for the ever-growing application of CDs in different fields.In this study,the hydrophilic and hydrophobic CDs were facilely prepared by solvothermal treatment of o-dihydroxybenzene and urea in N,N-dimethylformamide(DMF).Optimization experiments revealed that the solvothermal temperature has a great impact on the surface states of the CDs.The hydrophobic CDs with a contact angle of 110.7°was obtained at 200℃.The structural and optical characterizations,along with theoretical calculations elucidated that the lipophilic nature of the CDs was resulting from the formation of polymer chains.The presence of extended conjugated sp^(2)-domains and amino groups contributed to the red emission of the CDs synthesized at low reaction temperatures(160-200℃).With the further increase of solvothermal temperature,the hydrophobic CDs were gradually transformed to the hydrophilic state accompanying the blue shift of the fluorescence of the CDs.The highly hydrophilic CDs with a contact angle of 25.9°were obtained at 240℃ due to the increased formation of hydrophilic functional groups on the surface of CDs.The red emissive CDs exhibited a sensitive color and fluorescence response to ethanol content while the fluorescence of the blue emissive CDs remained constant.By combining the two kinds of CDs,a dual-emission sensor was constructed,which was successfully applied for the evaluation of the alcoholic strength in commercial Baijiu commodities in both fluorometric and colorimetric modes.展开更多
We describe a simple but efficient technique to fabricate large-scale arrays of highly ordered silicon nanostructures. By coupling dual lithography using light of 351.1 nm wavelength with deep reactive ion etching(DRI...We describe a simple but efficient technique to fabricate large-scale arrays of highly ordered silicon nanostructures. By coupling dual lithography using light of 351.1 nm wavelength with deep reactive ion etching(DRIE), silicon nanostructures of excellent regularity and uniform coverage were achieved. The proposed nanofabrication method not only simplified the nanofabrication process but also produced highaspect-ratio(higher than 15) nanostructures. The scalloping problem was also controlled by regulating DRIE parameters. The process is rapid, cheap, examined to optimize the fabrication process, and has the potential to be scaled up to large areas. The contact angle of a water droplet atop the surface is larger than 150?.Moreover, by coupling black silicon process with DRIE-based microfabrication, three-dimensional nano/nano dual-scale structures which show robust and stable hydrophobicity have been achieved. This process opens new application possibilities in optical, photoelectric, microelectronic, catalytic and biomedical applications.展开更多
In the beginning everything was explained in Biochemistry in terms of hydrogen-bonds (HB). Then, the devastating blow, known as the HB-inventory argument came;hydrogen bonding with water molecules compete with intramo...In the beginning everything was explained in Biochemistry in terms of hydrogen-bonds (HB). Then, the devastating blow, known as the HB-inventory argument came;hydrogen bonding with water molecules compete with intramolecular hydrogen-bonds. As a result, the HBs paradigm fell from grace. The void created was immediately filled by Kauzmann’s idea of hydrophobic (HφO) effect which reigned supreme in biochemical literature for over 50 years (1960-2010). Cracks in the HB-inventory argument on one hand, and doubts about the adequacy of Kauzmann’s model for the HφO effect, have led to a comeback of the HBs, along with a host of new hydrophilic (HφI) effects. The HφO effects lost much of its power - which it never really had - in explaining protein folding and protein-protein association. Instead, the more powerful and richer repertoire of HφI effects took over the reins. The interactions also offered simple and straightforward answers to the problems of protein folding, and protein-protein association.展开更多
In this paper, the effect of gangue minerals on the hydrophobic recovery of gold is being investigated using ores obtained from the active small scale gold mining sites in Tanzania. Gold ores of different gangue conte...In this paper, the effect of gangue minerals on the hydrophobic recovery of gold is being investigated using ores obtained from the active small scale gold mining sites in Tanzania. Gold ores of different gangue contents were tested. The effects of silica gangue and high sulphide gangue on gold attachment were examined including the effect of surface activators (potassium amyl xanthate) and the possibility of depressing the effects of gangue using reagents. The results were evaluated in terms of gold recovery, volumes and grade of concentrates formed. There was no change in gold recoveries when the amount of oxide gangue (quartz) in the ore was increased, indicating absence of competition between gold and quartz gangue. High sulphide contents in the ore above 6% reduced gold recoveries considerably. It was noted that potassium amyl xanthate surfactants increased the attachment of both gold and the sulphide gangue. Using lime at pH 10 it was possible to depress the sulphide gangue which is mainly pyrite and hence increased gold recoveries considerably.展开更多
文摘In this paper,morphological structure,thermodynamic compatibility and relationship be-tween porosities and blend ratios of the wet coagulated PU/PVA sheets were studied by meansof observation of scanning electronic micrographies,tests of dynamic mechanical properties,moisture regain and vapor permeability.Furthermore,the formation of microvoids at interfacesof separated phases was discussed and a microvoid formation mechanism at phase interfaces ofhydrophobic-hydrophilic blends was suggested and compared with that ofhydrophobic-hydrophobic blends.
基金financially supported by the National Natural Science Foundation of China(22378204,22008121,51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(T2125004)+1 种基金the Funding of NJUST(No.TSXK2022D002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0454)。
文摘The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.
基金This study was supported by the Peking Union Medical College (PUMC) Youth Fund and the Fundamental Research Funds for the Central Universities, China (333203084)
文摘Multidrug resistant(MDR) pathogen infections are serious threats to hospitalized patients because of the limited therapeutic options. A novel group of antibiotic candidates, antimicrobial peptides(AMPs), have recently shown powerful activities against both Gram-negative and Gram-positive bacteria. Unfortunately, the viability of using these AMPs in clinical settings remains to be seen, since most still need to be evaluated prior to clinical trials and not all of AMPs are potent against MDR clinical isolates. To find a connection between the characteristics of several of these AMPs and their effects against MDR pathogens, we selected 14 AMPs of animal origin with typical structures and evaluated their in vitro activities against clinical strains of extensive drugresistant Acinetobacter baumannii, methicillinresistant Staphylococcus aureus, extended spectrum β-lactamase-producing Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli. Our results showed that these peptides' hydrophilic/hydrophobic characteristics, rather than their secondary structures, may explain their antibacterial effects on these clinical isolates. Peptides that are amphipathic along the longitudinal direction seemed to be effective against Gramnegative pathogens, while peptides with hydrophilic terminals separated by a hydrophobic intermediate section appeared to be effective against both Gramnegative and Gram-positive pathogens. Among these, cathelicidin-BF was found to inhibit all of the Gram-negative pathogens tested at dosages of no more than 16 mg/L, killing a pandrug-resistant A. baumannii strain within 2 h at 4×MICs and 4 h at 2×MICs. Tachyplesin III was also found capable of inhibiting all Gram-negative and Gram-positive pathogens tested at no more than 16 mg/L, and similarly killed the same A. baumannii strain within 4 h at 4×MICs and 2×MICs. These results suggest that both cathelicidin-BF and tachyplesin III are likely viable targets for the development of AMPs for clinical uses.
文摘AIM: To conduct a Meta-analysis pooling randomized controlled trials(RCTs) to compare hydrophobic with hydrophilic acrylic intraocular lenses in terms of posterior capsule opacification(PCO) development.METHODS: Electronic databases including PubMed,Embase, and the Cochrane Library were queried from their starting till January 2020. RCTs investigating the impact of hydrophobic versus hydrophilic acrylic intraocular lenses on PCO were considered eligible in this study. The pooled effect estimates were calculated using the random-effects model.RESULTS: Thirteen RCTs comprising of 939 patients(1263 eyes) were covered in this study. Patients with hydrophobic acrylic intraocular lenses had a lower PCO score than those with a hydrophilic acrylic intraocular lenses [standard mean difference:-1.80;95% confidence interval(CI):-2.62 to-0.98;P<0.001]. Moreover, the frequency of neodymium-doped yttrium aluminum garnet(Nd:YAG)capsulotomy in patients with hydrophobic acrylic intraocular lenses was significantly lower than patients with hydrophilic acrylic intraocular lenses(relative risk: 0.38;95%CI: 0.20-0.71;P=0.003).CONCLUSION: These findings suggest that hydrophobic acrylic intraocular lenses are superior to hydrophilic acrylic intraocular lenses in patients after cataract surgery due to lower PCO score and reduced Nd:YAG capsulotomy. While similar studies are conducted by other researchers, the present study conducted subgroup analyses that show superior results with hydrophobic lenses in trials conducted in western countries.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 20074039) and National 863High-technology Project as well as the Science Foundation of PPLAS (No. 00-B-01).
文摘A hydrophobic-hydrophilic gradient rod with a length of 40 mm and a diameter of 3 mm was prepared by heating a polymethylsilsesquioxane rod in a cylindrical stove with temperature gradient. The rod was thus pyrolyzed under a temperature gradient condition. The organic end of the gradient rod appears hydrophobic with a contact angle of 109.9° while the other end is hydrophilic with a contact angle of 62.4°. The gradient chemical structure and the gradient microstructure along the rod were characterized by FTIR and SEM, respectively.
基金supported by National Natural Science Foundation of China(21401147)Basic Research Program of Natural Science from Shaanxi Provincial Government(2015JQ2032)+2 种基金Scientific Research Program from Education Department of Shaanxi Provincial Government(2013JK0654)Opening Foundation from State Key Laboratory of Coordination Chemistry in Nanjing University(201219)and the Program for Distinguished Young Scholars of Xi’an Polythenic University(201403)
文摘A new metal-organic framework based on ethyl 1H-tetrazole-5-acetate (Hetza), [Ag4(etza)4] (1), has been synthesized and characterized by elemental analysis, IR, thermal gravimetric and X-ray structural analysis. Crystal data for the title complex are as follows: triclinic system, space group P1 with a = 11.0771(6), b = 11.6636(6), c = 13.2925(8), a = 102.3710(10), β =103.3810(10), γ = 90.0890(10)°, V = 1629.60(16) A3, Mr = 1052.06, Z = 2, F(000) = 1024, Dc = 2.144 g/cm3, μ(MoKa) = 2.438 mm^-1, the final R = 0.0538 and wR = 0.1475 (I 〉 2σ(I)). Complex 1 adopts the (4.82) topological network and the alternately hydrophilic-hydrophilic and hydropho- bic-hydrophobic arrangements. The luminescent properties of complex 1 and the free Hetza ligand have been studied in the solid states.
基金supported by the National Natural Science Foundation of China(No.20474015)the Scientific Research Fund of Hunan Provincial Education Department(No.04A029).
文摘A hydrophilic/hydrophobic interpenetrating polymer network (IPN) of poly (vinyl alcohol) / polystyrene was prepared by conversion of the IPN of poly (vinyl acetate)/polystyrene. The hydrophilic/hydrophobic IPN was characterized by FT-IR and DSC, and the swelling ratios of the IPN in different solvents were measured.
基金supported by National Natural Science Foundation of China(Grant No.82160430)Natural Science Foundation of Guangxi(Grant No.2020GXNSFAA159134 and 2019GXNSFAA185060)+1 种基金Guangxi Science and Technology Base and Talent Special Project(Grant No.GuikeAD19254003 and GuikeAD21075002)Nanning Qingxiu District Science and Technology Major Special Project(Grant No.2020013).
文摘Drug delivery via intra-articular(IA)injection has proved to be effective in osteoarthritis(OA)therapy,limited by the drug efficiency and short retention time of the drug delivery systems(DDSs).Herein,a series of modified cross-linked dextran(Sephadex,S0)was fabricated by respectively grafting with linear alkyl chains,branched alkyl chains or aromatic chain,and acted as DDSs after ibuprofen(Ibu)loading for OA therapy.This DDSs expressed sustained drug release,excellent anti-inflammatory and chondroprotective effects both in IL-1βinduced chondrocytes and OA joints.Specifically,the introduction of a longer hydrophobic chain,particularly an aromatic chain,distinctly improved the hydrophobicity of S0,increased Ibu loading efficiency,and further led to significantly improving OA therapeutic effects.Therefore,hydrophobic microspheres with greatly improved drug loading ratio and prolonged degradation rates show great potential to act as DDSs for OA therapy.
基金Funded by the Program of Beijing Municipal Commission of Education
文摘Copolymerization of chitosan selectively grafted by polyethylene glycol was prepared. Chitosan was selectively grafted by monomethoxy polyethylene glycol(mPEG-OH), which contained a hydroxyl group combining with hexamethylene diisocyanate(HDI) to form a novel macromonomer namely monomethoxy polyethylene glycol isocyanate(mPEG-NCO) containing a isocyanate group with higher chemical activity in ethyl glyoxalate solution absolutely without water. The selective grafted copolymerization of Chitosan with mPEG-NCO was conducted under heterogeneous conditions as suspension in dimethylformamide. The hydrophilic copolymers of chitosan were prepared by condensation reaction of isocyanate group on mPEG- NCO with hydroxy groups on chitosan chains because amino groups on chitosan chains were protected by complexion formation with copper ions. The effect of reaction condition on the grafting extents was discussed. Swelling properties of mPEG-g-CS were researched. The graft copolymer mPEG-g-CS was characterized by the infrared spectra. The experimental result showed that the copper ions were very effective to protect amino groups from condensation reaction. The swelling degree in water increases with adding of grafting ratio. The maximum swelling degree was up to above 132% when the grafting ratio was about 270%. The graft copolymer can be soluble partially in pure water.
基金supported by the National Natural Science Foundation of China(Nos.52273118,22275013)。
文摘Owing to the spread of COVID-19,it is difficult to ignore the existence and importance of antimicrobial polymers(AMPs)because most protective appliances are made of polymers.Generally,bacteria prefer hydrophilic compounds,while fungi prefer hydrophobic ones.In recent decades,AMPs have made significant strides due to the versatile design of the functional groups or units for hydrophilic,hydrophobic,or amphiphilic performances.This review summarizes the advances of AMPs itself from the perspective of their wettability.Moreover,this study aims to clarify how the functional groups determine the interaction between the polymer and microorganisms directly affects the antimicrobial efficacy of the designed polymers.Based on the advances,the challenges and outlooks of AMPs from the perspective of wettability are systematically discussed to build a bridge between the structural design of AMPs and the requirements of practical applications.
基金supported by the National Natural Science Foundation of China(Nos.51973083,22376081)the Fundamental Research Funds for the Central Universities(No.JUSRP22027).
文摘It is of great significance to synthesize carbon dots(CDs)with desirable hydrophilicity for the ever-growing application of CDs in different fields.In this study,the hydrophilic and hydrophobic CDs were facilely prepared by solvothermal treatment of o-dihydroxybenzene and urea in N,N-dimethylformamide(DMF).Optimization experiments revealed that the solvothermal temperature has a great impact on the surface states of the CDs.The hydrophobic CDs with a contact angle of 110.7°was obtained at 200℃.The structural and optical characterizations,along with theoretical calculations elucidated that the lipophilic nature of the CDs was resulting from the formation of polymer chains.The presence of extended conjugated sp^(2)-domains and amino groups contributed to the red emission of the CDs synthesized at low reaction temperatures(160-200℃).With the further increase of solvothermal temperature,the hydrophobic CDs were gradually transformed to the hydrophilic state accompanying the blue shift of the fluorescence of the CDs.The highly hydrophilic CDs with a contact angle of 25.9°were obtained at 240℃ due to the increased formation of hydrophilic functional groups on the surface of CDs.The red emissive CDs exhibited a sensitive color and fluorescence response to ethanol content while the fluorescence of the blue emissive CDs remained constant.By combining the two kinds of CDs,a dual-emission sensor was constructed,which was successfully applied for the evaluation of the alcoholic strength in commercial Baijiu commodities in both fluorometric and colorimetric modes.
基金supported by NPU Foundation for Fundamental Research(NPU-FFR-JCY20130120)
文摘We describe a simple but efficient technique to fabricate large-scale arrays of highly ordered silicon nanostructures. By coupling dual lithography using light of 351.1 nm wavelength with deep reactive ion etching(DRIE), silicon nanostructures of excellent regularity and uniform coverage were achieved. The proposed nanofabrication method not only simplified the nanofabrication process but also produced highaspect-ratio(higher than 15) nanostructures. The scalloping problem was also controlled by regulating DRIE parameters. The process is rapid, cheap, examined to optimize the fabrication process, and has the potential to be scaled up to large areas. The contact angle of a water droplet atop the surface is larger than 150?.Moreover, by coupling black silicon process with DRIE-based microfabrication, three-dimensional nano/nano dual-scale structures which show robust and stable hydrophobicity have been achieved. This process opens new application possibilities in optical, photoelectric, microelectronic, catalytic and biomedical applications.
文摘In the beginning everything was explained in Biochemistry in terms of hydrogen-bonds (HB). Then, the devastating blow, known as the HB-inventory argument came;hydrogen bonding with water molecules compete with intramolecular hydrogen-bonds. As a result, the HBs paradigm fell from grace. The void created was immediately filled by Kauzmann’s idea of hydrophobic (HφO) effect which reigned supreme in biochemical literature for over 50 years (1960-2010). Cracks in the HB-inventory argument on one hand, and doubts about the adequacy of Kauzmann’s model for the HφO effect, have led to a comeback of the HBs, along with a host of new hydrophilic (HφI) effects. The HφO effects lost much of its power - which it never really had - in explaining protein folding and protein-protein association. Instead, the more powerful and richer repertoire of HφI effects took over the reins. The interactions also offered simple and straightforward answers to the problems of protein folding, and protein-protein association.
文摘In this paper, the effect of gangue minerals on the hydrophobic recovery of gold is being investigated using ores obtained from the active small scale gold mining sites in Tanzania. Gold ores of different gangue contents were tested. The effects of silica gangue and high sulphide gangue on gold attachment were examined including the effect of surface activators (potassium amyl xanthate) and the possibility of depressing the effects of gangue using reagents. The results were evaluated in terms of gold recovery, volumes and grade of concentrates formed. There was no change in gold recoveries when the amount of oxide gangue (quartz) in the ore was increased, indicating absence of competition between gold and quartz gangue. High sulphide contents in the ore above 6% reduced gold recoveries considerably. It was noted that potassium amyl xanthate surfactants increased the attachment of both gold and the sulphide gangue. Using lime at pH 10 it was possible to depress the sulphide gangue which is mainly pyrite and hence increased gold recoveries considerably.