The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR inv...The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.展开更多
Multidrug resistant(MDR) pathogen infections are serious threats to hospitalized patients because of the limited therapeutic options. A novel group of antibiotic candidates, antimicrobial peptides(AMPs), have rece...Multidrug resistant(MDR) pathogen infections are serious threats to hospitalized patients because of the limited therapeutic options. A novel group of antibiotic candidates, antimicrobial peptides(AMPs), have recently shown powerful activities against both Gram-negative and Gram-positive bacteria. Unfortunately, the viability of using these AMPs in clinical settings remains to be seen, since most still need to be evaluated prior to clinical trials and not all of AMPs are potent against MDR clinical isolates. To find a connection between the characteristics of several of these AMPs and their effects against MDR pathogens, we selected 14 AMPs of animal origin with typical structures and evaluated their in vitro activities against clinical strains of extensive drugresistant Acinetobacter baumannii, methicillinresistant Staphylococcus aureus, extended spectrum β-lactamase-producing Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli. Our results showed that these peptides' hydrophilic/hydrophobic characteristics, rather than their secondary structures, may explain their antibacterial effects on these clinical isolates. Peptides that are amphipathic along the longitudinal direction seemed to be effective against Gramnegative pathogens, while peptides with hydrophilic terminals separated by a hydrophobic intermediate section appeared to be effective against both Gramnegative and Gram-positive pathogens. Among these, cathelicidin-BF was found to inhibit all of the Gram-negative pathogens tested at dosages of no more than 16 mg/L, killing a pandrug-resistant A. baumannii strain within 2 h at 4×MICs and 4 h at 2×MICs. Tachyplesin III was also found capable of inhibiting all Gram-negative and Gram-positive pathogens tested at no more than 16 mg/L, and similarly killed the same A. baumannii strain within 4 h at 4×MICs and 2×MICs. These results suggest that both cathelicidin-BF and tachyplesin III are likely viable targets for the development of AMPs for clinical uses.展开更多
AIM: To conduct a Meta-analysis pooling randomized controlled trials(RCTs) to compare hydrophobic with hydrophilic acrylic intraocular lenses in terms of posterior capsule opacification(PCO) development.METHODS: Elect...AIM: To conduct a Meta-analysis pooling randomized controlled trials(RCTs) to compare hydrophobic with hydrophilic acrylic intraocular lenses in terms of posterior capsule opacification(PCO) development.METHODS: Electronic databases including PubMed,Embase, and the Cochrane Library were queried from their starting till January 2020. RCTs investigating the impact of hydrophobic versus hydrophilic acrylic intraocular lenses on PCO were considered eligible in this study. The pooled effect estimates were calculated using the random-effects model.RESULTS: Thirteen RCTs comprising of 939 patients(1263 eyes) were covered in this study. Patients with hydrophobic acrylic intraocular lenses had a lower PCO score than those with a hydrophilic acrylic intraocular lenses [standard mean difference:-1.80;95% confidence interval(CI):-2.62 to-0.98;P<0.001]. Moreover, the frequency of neodymium-doped yttrium aluminum garnet(Nd:YAG)capsulotomy in patients with hydrophobic acrylic intraocular lenses was significantly lower than patients with hydrophilic acrylic intraocular lenses(relative risk: 0.38;95%CI: 0.20-0.71;P=0.003).CONCLUSION: These findings suggest that hydrophobic acrylic intraocular lenses are superior to hydrophilic acrylic intraocular lenses in patients after cataract surgery due to lower PCO score and reduced Nd:YAG capsulotomy. While similar studies are conducted by other researchers, the present study conducted subgroup analyses that show superior results with hydrophobic lenses in trials conducted in western countries.展开更多
A hydrophobic-hydrophilic gradient rod with a length of 40 mm and a diameter of 3 mm was prepared by heating a polymethylsilsesquioxane rod in a cylindrical stove with temperature gradient. The rod was thus pyrolyzed ...A hydrophobic-hydrophilic gradient rod with a length of 40 mm and a diameter of 3 mm was prepared by heating a polymethylsilsesquioxane rod in a cylindrical stove with temperature gradient. The rod was thus pyrolyzed under a temperature gradient condition. The organic end of the gradient rod appears hydrophobic with a contact angle of 109.9° while the other end is hydrophilic with a contact angle of 62.4°. The gradient chemical structure and the gradient microstructure along the rod were characterized by FTIR and SEM, respectively.展开更多
A new metal-organic framework based on ethyl 1H-tetrazole-5-acetate (Hetza), [Ag4(etza)4] (1), has been synthesized and characterized by elemental analysis, IR, thermal gravimetric and X-ray structural analysis....A new metal-organic framework based on ethyl 1H-tetrazole-5-acetate (Hetza), [Ag4(etza)4] (1), has been synthesized and characterized by elemental analysis, IR, thermal gravimetric and X-ray structural analysis. Crystal data for the title complex are as follows: triclinic system, space group P1 with a = 11.0771(6), b = 11.6636(6), c = 13.2925(8), a = 102.3710(10), β =103.3810(10), γ = 90.0890(10)°, V = 1629.60(16) A3, Mr = 1052.06, Z = 2, F(000) = 1024, Dc = 2.144 g/cm3, μ(MoKa) = 2.438 mm^-1, the final R = 0.0538 and wR = 0.1475 (I 〉 2σ(I)). Complex 1 adopts the (4.82) topological network and the alternately hydrophilic-hydrophilic and hydropho- bic-hydrophobic arrangements. The luminescent properties of complex 1 and the free Hetza ligand have been studied in the solid states.展开更多
In this paper,morphological structure,thermodynamic compatibility and relationship be-tween porosities and blend ratios of the wet coagulated PU/PVA sheets were studied by meansof observation of scanning electronic mi...In this paper,morphological structure,thermodynamic compatibility and relationship be-tween porosities and blend ratios of the wet coagulated PU/PVA sheets were studied by meansof observation of scanning electronic micrographies,tests of dynamic mechanical properties,moisture regain and vapor permeability.Furthermore,the formation of microvoids at interfacesof separated phases was discussed and a microvoid formation mechanism at phase interfaces ofhydrophobic-hydrophilic blends was suggested and compared with that ofhydrophobic-hydrophobic blends.展开更多
A hydrophilic/hydrophobic interpenetrating polymer network (IPN) of poly (vinyl alcohol) / polystyrene was prepared by conversion of the IPN of poly (vinyl acetate)/polystyrene. The hydrophilic/hydrophobic IPN w...A hydrophilic/hydrophobic interpenetrating polymer network (IPN) of poly (vinyl alcohol) / polystyrene was prepared by conversion of the IPN of poly (vinyl acetate)/polystyrene. The hydrophilic/hydrophobic IPN was characterized by FT-IR and DSC, and the swelling ratios of the IPN in different solvents were measured.展开更多
Owing to the spread of COVID-19,it is difficult to ignore the existence and importance of antimicrobial polymers(AMPs)because most protective appliances are made of polymers.Generally,bacteria prefer hydrophilic compo...Owing to the spread of COVID-19,it is difficult to ignore the existence and importance of antimicrobial polymers(AMPs)because most protective appliances are made of polymers.Generally,bacteria prefer hydrophilic compounds,while fungi prefer hydrophobic ones.In recent decades,AMPs have made significant strides due to the versatile design of the functional groups or units for hydrophilic,hydrophobic,or amphiphilic performances.This review summarizes the advances of AMPs itself from the perspective of their wettability.Moreover,this study aims to clarify how the functional groups determine the interaction between the polymer and microorganisms directly affects the antimicrobial efficacy of the designed polymers.Based on the advances,the challenges and outlooks of AMPs from the perspective of wettability are systematically discussed to build a bridge between the structural design of AMPs and the requirements of practical applications.展开更多
It is of great significance to synthesize carbon dots(CDs)with desirable hydrophilicity for the ever-growing application of CDs in different fields.In this study,the hydrophilic and hydrophobic CDs were facilely prepa...It is of great significance to synthesize carbon dots(CDs)with desirable hydrophilicity for the ever-growing application of CDs in different fields.In this study,the hydrophilic and hydrophobic CDs were facilely prepared by solvothermal treatment of o-dihydroxybenzene and urea in N,N-dimethylformamide(DMF).Optimization experiments revealed that the solvothermal temperature has a great impact on the surface states of the CDs.The hydrophobic CDs with a contact angle of 110.7°was obtained at 200℃.The structural and optical characterizations,along with theoretical calculations elucidated that the lipophilic nature of the CDs was resulting from the formation of polymer chains.The presence of extended conjugated sp^(2)-domains and amino groups contributed to the red emission of the CDs synthesized at low reaction temperatures(160-200℃).With the further increase of solvothermal temperature,the hydrophobic CDs were gradually transformed to the hydrophilic state accompanying the blue shift of the fluorescence of the CDs.The highly hydrophilic CDs with a contact angle of 25.9°were obtained at 240℃ due to the increased formation of hydrophilic functional groups on the surface of CDs.The red emissive CDs exhibited a sensitive color and fluorescence response to ethanol content while the fluorescence of the blue emissive CDs remained constant.By combining the two kinds of CDs,a dual-emission sensor was constructed,which was successfully applied for the evaluation of the alcoholic strength in commercial Baijiu commodities in both fluorometric and colorimetric modes.展开更多
In the beginning everything was explained in Biochemistry in terms of hydrogen-bonds (HB). Then, the devastating blow, known as the HB-inventory argument came;hydrogen bonding with water molecules compete with intramo...In the beginning everything was explained in Biochemistry in terms of hydrogen-bonds (HB). Then, the devastating blow, known as the HB-inventory argument came;hydrogen bonding with water molecules compete with intramolecular hydrogen-bonds. As a result, the HBs paradigm fell from grace. The void created was immediately filled by Kauzmann’s idea of hydrophobic (HφO) effect which reigned supreme in biochemical literature for over 50 years (1960-2010). Cracks in the HB-inventory argument on one hand, and doubts about the adequacy of Kauzmann’s model for the HφO effect, have led to a comeback of the HBs, along with a host of new hydrophilic (HφI) effects. The HφO effects lost much of its power - which it never really had - in explaining protein folding and protein-protein association. Instead, the more powerful and richer repertoire of HφI effects took over the reins. The interactions also offered simple and straightforward answers to the problems of protein folding, and protein-protein association.展开更多
基金financially supported by the National Natural Science Foundation of China(22378204,22008121,51790492)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(T2125004)+1 种基金the Funding of NJUST(No.TSXK2022D002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0454)。
文摘The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation.
基金This study was supported by the Peking Union Medical College (PUMC) Youth Fund and the Fundamental Research Funds for the Central Universities, China (333203084)
文摘Multidrug resistant(MDR) pathogen infections are serious threats to hospitalized patients because of the limited therapeutic options. A novel group of antibiotic candidates, antimicrobial peptides(AMPs), have recently shown powerful activities against both Gram-negative and Gram-positive bacteria. Unfortunately, the viability of using these AMPs in clinical settings remains to be seen, since most still need to be evaluated prior to clinical trials and not all of AMPs are potent against MDR clinical isolates. To find a connection between the characteristics of several of these AMPs and their effects against MDR pathogens, we selected 14 AMPs of animal origin with typical structures and evaluated their in vitro activities against clinical strains of extensive drugresistant Acinetobacter baumannii, methicillinresistant Staphylococcus aureus, extended spectrum β-lactamase-producing Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli. Our results showed that these peptides' hydrophilic/hydrophobic characteristics, rather than their secondary structures, may explain their antibacterial effects on these clinical isolates. Peptides that are amphipathic along the longitudinal direction seemed to be effective against Gramnegative pathogens, while peptides with hydrophilic terminals separated by a hydrophobic intermediate section appeared to be effective against both Gramnegative and Gram-positive pathogens. Among these, cathelicidin-BF was found to inhibit all of the Gram-negative pathogens tested at dosages of no more than 16 mg/L, killing a pandrug-resistant A. baumannii strain within 2 h at 4×MICs and 4 h at 2×MICs. Tachyplesin III was also found capable of inhibiting all Gram-negative and Gram-positive pathogens tested at no more than 16 mg/L, and similarly killed the same A. baumannii strain within 4 h at 4×MICs and 2×MICs. These results suggest that both cathelicidin-BF and tachyplesin III are likely viable targets for the development of AMPs for clinical uses.
文摘AIM: To conduct a Meta-analysis pooling randomized controlled trials(RCTs) to compare hydrophobic with hydrophilic acrylic intraocular lenses in terms of posterior capsule opacification(PCO) development.METHODS: Electronic databases including PubMed,Embase, and the Cochrane Library were queried from their starting till January 2020. RCTs investigating the impact of hydrophobic versus hydrophilic acrylic intraocular lenses on PCO were considered eligible in this study. The pooled effect estimates were calculated using the random-effects model.RESULTS: Thirteen RCTs comprising of 939 patients(1263 eyes) were covered in this study. Patients with hydrophobic acrylic intraocular lenses had a lower PCO score than those with a hydrophilic acrylic intraocular lenses [standard mean difference:-1.80;95% confidence interval(CI):-2.62 to-0.98;P<0.001]. Moreover, the frequency of neodymium-doped yttrium aluminum garnet(Nd:YAG)capsulotomy in patients with hydrophobic acrylic intraocular lenses was significantly lower than patients with hydrophilic acrylic intraocular lenses(relative risk: 0.38;95%CI: 0.20-0.71;P=0.003).CONCLUSION: These findings suggest that hydrophobic acrylic intraocular lenses are superior to hydrophilic acrylic intraocular lenses in patients after cataract surgery due to lower PCO score and reduced Nd:YAG capsulotomy. While similar studies are conducted by other researchers, the present study conducted subgroup analyses that show superior results with hydrophobic lenses in trials conducted in western countries.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 20074039) and National 863High-technology Project as well as the Science Foundation of PPLAS (No. 00-B-01).
文摘A hydrophobic-hydrophilic gradient rod with a length of 40 mm and a diameter of 3 mm was prepared by heating a polymethylsilsesquioxane rod in a cylindrical stove with temperature gradient. The rod was thus pyrolyzed under a temperature gradient condition. The organic end of the gradient rod appears hydrophobic with a contact angle of 109.9° while the other end is hydrophilic with a contact angle of 62.4°. The gradient chemical structure and the gradient microstructure along the rod were characterized by FTIR and SEM, respectively.
基金supported by National Natural Science Foundation of China(21401147)Basic Research Program of Natural Science from Shaanxi Provincial Government(2015JQ2032)+2 种基金Scientific Research Program from Education Department of Shaanxi Provincial Government(2013JK0654)Opening Foundation from State Key Laboratory of Coordination Chemistry in Nanjing University(201219)and the Program for Distinguished Young Scholars of Xi’an Polythenic University(201403)
文摘A new metal-organic framework based on ethyl 1H-tetrazole-5-acetate (Hetza), [Ag4(etza)4] (1), has been synthesized and characterized by elemental analysis, IR, thermal gravimetric and X-ray structural analysis. Crystal data for the title complex are as follows: triclinic system, space group P1 with a = 11.0771(6), b = 11.6636(6), c = 13.2925(8), a = 102.3710(10), β =103.3810(10), γ = 90.0890(10)°, V = 1629.60(16) A3, Mr = 1052.06, Z = 2, F(000) = 1024, Dc = 2.144 g/cm3, μ(MoKa) = 2.438 mm^-1, the final R = 0.0538 and wR = 0.1475 (I 〉 2σ(I)). Complex 1 adopts the (4.82) topological network and the alternately hydrophilic-hydrophilic and hydropho- bic-hydrophobic arrangements. The luminescent properties of complex 1 and the free Hetza ligand have been studied in the solid states.
文摘In this paper,morphological structure,thermodynamic compatibility and relationship be-tween porosities and blend ratios of the wet coagulated PU/PVA sheets were studied by meansof observation of scanning electronic micrographies,tests of dynamic mechanical properties,moisture regain and vapor permeability.Furthermore,the formation of microvoids at interfacesof separated phases was discussed and a microvoid formation mechanism at phase interfaces ofhydrophobic-hydrophilic blends was suggested and compared with that ofhydrophobic-hydrophobic blends.
基金supported by the National Natural Science Foundation of China(No.20474015)the Scientific Research Fund of Hunan Provincial Education Department(No.04A029).
文摘A hydrophilic/hydrophobic interpenetrating polymer network (IPN) of poly (vinyl alcohol) / polystyrene was prepared by conversion of the IPN of poly (vinyl acetate)/polystyrene. The hydrophilic/hydrophobic IPN was characterized by FT-IR and DSC, and the swelling ratios of the IPN in different solvents were measured.
基金supported by the National Natural Science Foundation of China(Nos.52273118,22275013)。
文摘Owing to the spread of COVID-19,it is difficult to ignore the existence and importance of antimicrobial polymers(AMPs)because most protective appliances are made of polymers.Generally,bacteria prefer hydrophilic compounds,while fungi prefer hydrophobic ones.In recent decades,AMPs have made significant strides due to the versatile design of the functional groups or units for hydrophilic,hydrophobic,or amphiphilic performances.This review summarizes the advances of AMPs itself from the perspective of their wettability.Moreover,this study aims to clarify how the functional groups determine the interaction between the polymer and microorganisms directly affects the antimicrobial efficacy of the designed polymers.Based on the advances,the challenges and outlooks of AMPs from the perspective of wettability are systematically discussed to build a bridge between the structural design of AMPs and the requirements of practical applications.
基金supported by the National Natural Science Foundation of China(Nos.51973083,22376081)the Fundamental Research Funds for the Central Universities(No.JUSRP22027).
文摘It is of great significance to synthesize carbon dots(CDs)with desirable hydrophilicity for the ever-growing application of CDs in different fields.In this study,the hydrophilic and hydrophobic CDs were facilely prepared by solvothermal treatment of o-dihydroxybenzene and urea in N,N-dimethylformamide(DMF).Optimization experiments revealed that the solvothermal temperature has a great impact on the surface states of the CDs.The hydrophobic CDs with a contact angle of 110.7°was obtained at 200℃.The structural and optical characterizations,along with theoretical calculations elucidated that the lipophilic nature of the CDs was resulting from the formation of polymer chains.The presence of extended conjugated sp^(2)-domains and amino groups contributed to the red emission of the CDs synthesized at low reaction temperatures(160-200℃).With the further increase of solvothermal temperature,the hydrophobic CDs were gradually transformed to the hydrophilic state accompanying the blue shift of the fluorescence of the CDs.The highly hydrophilic CDs with a contact angle of 25.9°were obtained at 240℃ due to the increased formation of hydrophilic functional groups on the surface of CDs.The red emissive CDs exhibited a sensitive color and fluorescence response to ethanol content while the fluorescence of the blue emissive CDs remained constant.By combining the two kinds of CDs,a dual-emission sensor was constructed,which was successfully applied for the evaluation of the alcoholic strength in commercial Baijiu commodities in both fluorometric and colorimetric modes.
文摘In the beginning everything was explained in Biochemistry in terms of hydrogen-bonds (HB). Then, the devastating blow, known as the HB-inventory argument came;hydrogen bonding with water molecules compete with intramolecular hydrogen-bonds. As a result, the HBs paradigm fell from grace. The void created was immediately filled by Kauzmann’s idea of hydrophobic (HφO) effect which reigned supreme in biochemical literature for over 50 years (1960-2010). Cracks in the HB-inventory argument on one hand, and doubts about the adequacy of Kauzmann’s model for the HφO effect, have led to a comeback of the HBs, along with a host of new hydrophilic (HφI) effects. The HφO effects lost much of its power - which it never really had - in explaining protein folding and protein-protein association. Instead, the more powerful and richer repertoire of HφI effects took over the reins. The interactions also offered simple and straightforward answers to the problems of protein folding, and protein-protein association.