期刊文献+
共找到1,667篇文章
< 1 2 84 >
每页显示 20 50 100
Superhydrophobic Surface-Assisted Preparation of Microspheres and Supraparticles and Their Applications 被引量:1
1
作者 Mengyao Pan Huijuan Shao +11 位作者 Yue Fan Jinlong Yang Jiaxin Liu Zhongqian Deng Zhenda Liu Zhidi Chen Jun Zhang Kangfeng Yi Yucai Su Dehui Wang Xu Deng Fei Deng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期110-138,共29页
Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them... Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities. 展开更多
关键词 superhydrophobic surface Microspheres and supraparticles Photonic devices CATALYSTS Biomedical and trace detections
下载PDF
Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing 被引量:20
2
作者 Jing Li Feng Du +2 位作者 Xianli Liu Zhonghao Jiang Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第4期369-374,共6页
Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stre... Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa. The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3μL water drop at room temperature. The measurement of the wetting property showed that the water contact angle of the unmodi- fied as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time. The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure. The structure is composed of the micro-scaled alumina columns and pores. The height of columns and the depth of pores depend on the ano- dizing time. The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT), showing a change in the wettability from hydrophobicity to su- per-hydrophobicity. This improvement in the wetting property chemical modification. is attributed to the decrease in the surface energy caused by the 展开更多
关键词 bionic surface superhydrophobicITY aluminum alloy ANODIZING
下载PDF
Superhydrophobic surface of Mg alloys:A review 被引量:28
3
作者 M.Yeganeh N.Mohammadi 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第1期59-70,共12页
In the present review,the formation of superhydrophobic(SHP)structures on the surface of Mg alloys was investigated.Different methods including hydrothermal technique,chemical and electrochemical deposition,conversion... In the present review,the formation of superhydrophobic(SHP)structures on the surface of Mg alloys was investigated.Different methods including hydrothermal technique,chemical and electrochemical deposition,conversion and polymer coating,and etching routes were discussed.The superhydrophobicity could form on the surface of Mg alloys by the application of different chemical,electrochemical,and physical methods followed by the immersion of these alloys in the solution containing modifying agents including fatty acids or long-chain molecules.The formed morphology,composition,and contact angle were reported and the effect of synthesis route on these characteristics was reviewed. 展开更多
关键词 Mg alloys superhydrophobic surfaces Chemical deposition Electrochemical coating Conversion coating Polymer coating ETCHING
下载PDF
Fabrication of Superhydrophobic Surfaces on Aluminum Alloy Via Electrodeposition of Copper Followed by Electrochemical Modification 被引量:5
4
作者 Ying Huang D.K.Sarkar X-Grant Chen 《Nano-Micro Letters》 SCIE EI CAS 2011年第3期160-165,共6页
Superhydrophobic aluminum surfaces have been prepared by means of electrodeposition of copper on aluminum surfaces, followed by electrochemical modification using stearic acid organic molecules. Scanning electron micr... Superhydrophobic aluminum surfaces have been prepared by means of electrodeposition of copper on aluminum surfaces, followed by electrochemical modification using stearic acid organic molecules. Scanning electron microscopy(SEM) images show that the electrodeposited copper films follow "island growth mode" in the form of microdots and their number densities increase with the rise of the negative deposition potentials. At an electrodeposition potential of-0.2 V the number density of the copper microdots are found to be 4.5×104cm^(-2)that are increased to 2.9×105cm^(-2)at a potential of-0.8 V. Systematically, the distances between the microdots are found to be reduced from 26.6 μm to 11.03 μm with the increase of negative electrochemical potential from-0.2 V to-0.8 V. X-ray diffraction(XRD) analyses have confirmed the formation of copper stearate on the stearic acid modified copper films. The roughness of the stearic acid modified electrodeposited copper films is found to increase with the increase in the density of the copper microdots. A critical copper deposition potential of-0.6 V in conjunction with the stearic acid modification provides a surface roughness of 6.2 μm with a water contact angle of 157?, resulting in superhydrophobic properties on the aluminum substrates. 展开更多
关键词 superhydrophobic aluminum surface Water contact angle Copper microdots surface roughness Electrochemical modification
下载PDF
Synthesis of Biomimetic Superhydrophobic Surface through Electrochemical Deposition on Porous Alumina 被引量:4
5
作者 Jiadao Wang Ang Li Haosheng Chen Darong Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第2期122-128,共7页
The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabr... The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabrication of biomimetic hierarchical structures by electrochemical deposition of a metal on porous alumina is described. An aluminum specimen was anodically oxidized to obtain a porous alumina template, which was used as an electrode to fabricate a surface with micro structures through electrochemical deposition of a metal such as nickel and copper after the enlargement of pores. Astonishingly, a hier- archical structure with nanometer pillars and micrometer clusters was synthesized in the pores of the template. The nanometer pillars were determined by the nanometer pores. The lbrmation of micrometer clusters was related to the thin walls of the pores and the crystallization of the metal on a flat surface. From the as-prepared biomimetic surfaces, lotus-leaf-like superhydrophobic surfaces with nickel and copper deposition were achieved. 展开更多
关键词 porous alumina electrochemical deposition anodization superhydrophobic surface bioinspired hierarchical structure
下载PDF
Simple Fabrication of Hierarchical Micro/Nanostructure Superhydrophobic Surface with Stable and Superior Anticorrosion Silicon Steel via Laser Marking Treatment 被引量:3
6
作者 FU Jing TANG Mingkai ZHANG Qiaoxin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期411-417,共7页
To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-sca... To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-scale hump and sheet-like nanostructure was successfully prepared on silicon steel by a simple,efficient and facile operation in large-area laser marking treatment.The morphology,composition,wettability of the as-prepared surface were studied.The superhydrophobic performance of the surface was investigated as well.Additionally,the corrosion resistance of the superhydrophobic surface to acidic solutions at room temperature and alkaline solutions at high temperature (80 ℃) was carefully explored.The corrosion resistance mechanism was clarified.Moreover,considering the practical application of the surface in the future,the hardness of the hierarchical micro/nanostructure superhydrophobic surface was studied.The experimental results indicate that the hierarchical micro/nanostructure surface with texture spacing of 100 μm treated at laser scanning speed of 100 mms/ presents superior superhydrophobicity after decreasing surface energy.The contact angle can be as high as 156.6°.Additionally,the superhydrophobic surface provide superior and stable anticorrosive protection for silicon steel in various corrosive environments.More importantly,the prepared structure of the surface shows high hardness,which ensures that the surface of the superhydrophobic surface cannot be destroyed easily.The surface is able to maintain great superhydrophobic performance when it suffers from slight impacting and abrasion. 展开更多
关键词 silicon steel laser marking hierarchical micro/nanostructure superhydrophobic surface corrosion resistance
下载PDF
Fabrication of Superhydrophobic Aluminum Plate by Surface Etching and Fluorosilane Modification 被引量:1
7
作者 YIN Shi-heng ZHU Bin +2 位作者 LIU Yun-chun YANG Ji KUANG Tong-chun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第5期903-906,共4页
Superhydrophobic aluminum surfaces with a high water contact angle and low sliding angle on aluminum plate substrate were fabricated by means of surface etching with sodium hydroxide under ultrasonic bathing and then ... Superhydrophobic aluminum surfaces with a high water contact angle and low sliding angle on aluminum plate substrate were fabricated by means of surface etching with sodium hydroxide under ultrasonic bathing and then modification with fluorosilane. Scanning electron microscopy(SEM) showed a honeycomb-like structure on aluminum substrate surface after etching under ultrasonic bathing. And the surface was rendered from superhydrophilicity to superhydrophobicity after further modification with fluorosilane. 展开更多
关键词 superhydrophobicITY Aluminum surface etching FLUOROSILANE
下载PDF
Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications 被引量:2
8
作者 Shitong Zhu Wenyi Deng Yaxin Su 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期221-236,共16页
In the past few decades,inspired by the superhydrophobic surfaces(SHPS)of animals and plants such as lotus leaves,rose petals,legs of water striders,and wings of butterflies,preparing metal materials with metallic SHP... In the past few decades,inspired by the superhydrophobic surfaces(SHPS)of animals and plants such as lotus leaves,rose petals,legs of water striders,and wings of butterflies,preparing metal materials with metallic SHPS(MSHPS)have attracted great research interest,due to the great prospect in practical applications.To obtain SHPS on conventional metal materials,it is necessary to construct rough surface,followed by modification with low surface energy substances.In this paper,the action mechanism and the current research status of MSHPS were reviewed through the following aspects.Firstly,the model of wetting theory was presented,and then the progress in MSHPS preparation through chemical etching method was discussed.Secondly,the applications of MSHPS in self-cleaning,anti-icing,corrosion resistance,drag reduction,oil-water separation,and other aspects were introduced.Finally,the challenges encountered in the present application of MSHPS were summarized,and the future research interests were discussed. 展开更多
关键词 METAL superhydrophobic surface Chemical etching Low adhesion SELF-CLEANING
下载PDF
A Review: Natural Superhydrophobic Surfaces and Applications 被引量:2
9
作者 Mengru Jin Qianli Xing Zikang Chen 《Journal of Biomaterials and Nanobiotechnology》 2020年第2期110-149,共40页
As the mimic biology becomes more and more important in the field of technology, superhydrophobic materials in the natural world have also become common. Superhydrophobic surfaces are used to prevent water droplets fr... As the mimic biology becomes more and more important in the field of technology, superhydrophobic materials in the natural world have also become common. Superhydrophobic surfaces are used to prevent water droplets from wetting themselves which contain the micro- and nano-structures named hierarchical surfaces and exhibit the high water contact angles (WCA) that are greater than 150&#730;and perfect application foreground in both our daily lives and industry. In this work, we first discuss several surface properties and their numerical models. And then we list the surface properties of a variety of natural superhydrophobic surfaces and sum up their similarities and differences. The most recent strategies of how to apply natural superhydrophobic surfaces are also introduced within the past several years. In addition, we talk about the limitations of the current generation of superhydrophobic surfaces and prospects which looks for solutions to the problems. This review aims to enable researchers to learn more about the principles and mechanisms of superhydrophobicity and perceive the new methods for creating and modifying it. 展开更多
关键词 superhydrophobic surface WETTING Models BIOMIMETIC Application ADHESION
下载PDF
Stainless steel anisotropic superhydrophobic surfaces fabrication with inclined cone array via laser ablation and post annealing treatment 被引量:2
10
作者 ZHAO Yi-zhe HONG Ming-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3261-3269,共9页
Metal superhydrophobic surfaces with anisotropic wettability and adhesion have become more and more important due to their promising applications. Herein, we report a new fabrication strategy through a combination of ... Metal superhydrophobic surfaces with anisotropic wettability and adhesion have become more and more important due to their promising applications. Herein, we report a new fabrication strategy through a combination of pulsed laser ablation and low-temperature annealing post-processing. An inclined cone structure array is made on stainless steel surfaces, and then 120 °C low-temperature annealing is applied. Such surface displays excellent mechanical durability and anisotropic superhydrophobicity. It is demonstrated experimentally that the contact angle of water droplets on the surface is different along the parallel(167° ±2°) and perpendicular directions(157° ±2°) of the inclined cone structure. The sliding behaviors of water droplets and mechanical durability of the inclined cone structures are studied. These surfaces obtained in a short time with environmentally friendly fabrication can be applied in industries for water harvesting, droplet manipulation, and pipeline transportation. 展开更多
关键词 superhydrophobic anisotropy laser precision engineering micro/nano-structure bio-inspired surface
下载PDF
ELECTROSPRAYING/ELECTROSPINNING OF POLY(γ-STEARYL-LGLUTAMATE):FORMATION OF SURFACES WITH SUPERHYDROPHOBICITY 被引量:1
11
作者 吴健 徐志康 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第1期115-120,共6页
Electrospraying/electrospinning of poly(γ-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenua... Electrospraying/electrospinning of poly(γ-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenuated Iotal reflectance Fourier transform infrared spectroscopy (FT-IR/ATR) were used to characterize the morphology and structure of the electrosprayed/electrospun polypeptide mats.It was found that electrospraying of PSLG with concentrations lower than 16 wt% afforded beads,while microfibers cou... 展开更多
关键词 Electrospinning/electrospraying Poly(γ-stearyl-L-glutamate) POLYPEPTIDE Water contact angle superhydrophobic surface
下载PDF
Influence of Weather Conditions on the Surface Morphology and Wetting Behaviour of Superhydrophobic Quaking Aspen Leaves 被引量:1
12
作者 J. J. Victor U. Erb 《American Journal of Plant Sciences》 2013年第5期61-68,共8页
The effects of different environmental conditions on the wetting properties and surface morphology of surperhydrophobic quaking aspen leaves harvested during the 2011 growth season are examined. During this particular... The effects of different environmental conditions on the wetting properties and surface morphology of surperhydrophobic quaking aspen leaves harvested during the 2011 growth season are examined. During this particular season quaking aspen leaves were not able to retain their superhydrophobic properties and associated surface structure features as they have usually been able to do in other years. Representative scanning electron microscopy images and wetting property measurements of quaking aspen leaf surfaces harvested throughout this season are presented and discussed with the objective of linking weather induced environmental stresses that occurred in 2011 to the sudden and unusual reduction in non-wetting properties and drastic changes in leaf surface structure. Erosion and regeneration rates of leaf wax crystals and the impact that environmental factors can have on these are considered and used to explain the occurrence of these unexpected changes. 展开更多
关键词 Quaking ASPEN LEAVES superhydrophobic surface Structure WAX Crystal Erosion/Regeneration WEATHER Conditions
下载PDF
The Fabrication of Microstructure Surface of Superhydrophobic Coating by Surface Gelation Technology 被引量:4
13
作者 DUAN Hui WANG Houzhi +1 位作者 ZHAO Lei ZHAO Huizhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第2期163-165,共3页
The microstructured surface of materials were fabricated by a two-step acid-base catalyzed sol-gel process. In fluorinated polymer with PTFE doping, the well-proportioned composite sols were prepared using sol-gel pro... The microstructured surface of materials were fabricated by a two-step acid-base catalyzed sol-gel process. In fluorinated polymer with PTFE doping, the well-proportioned composite sols were prepared using sol-gel processing under the hydrochloric acid and deficiency of water conditions. After the substrate was coated by composite sols, and the gelation treatment on the surface of composite coating, the micrometer-scale and nanometer-scale hierarchical structures were formed in surface layer of material. XPS and TEM technologies were employed to identify that the gelation occurs just on the surface of composite coating. The morphology of coating surface was observed by SEM and AFM technologies. The microstructured surface of material can be fabricated using this inexpensive and easily controlled method on low surface energy resin materials, the super-hydrophobic coatings materials can be prepared. 展开更多
关键词 surface gelation technology ROUGHNESS contact angle SUPER-hydrophobic
下载PDF
Fabrication and Wettable Investigation of Superhydrophobic Surface by Soft Lithography
14
作者 LI Gang LI Zhigang +2 位作者 LU Liming XIE Long DENG Chunsheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期138-141,共4页
The natural hydrophobicity of surfaces can be enhanced if they are microtextured due to air trapped in the structure, which provides the deposited drop with a composite surface made of solid and air on which it is res... The natural hydrophobicity of surfaces can be enhanced if they are microtextured due to air trapped in the structure, which provides the deposited drop with a composite surface made of solid and air on which it is rest. Here, a series of grating microstructure surfaces with different parameters have been designed and fabricated by a novel soft lithography. The water contact angles (WCA) on these rough surfaces are measured through optical contact angle meter. The results indicate that all the WCA on the surfaces with grating microstructures are up to 150~; WCA increases and the hydrophobic performance also enhances with the decrease of the ridge width under the other fixed parameter condition; Experimental data obtained basically consists with the Cassie's theoretical prediction. The effects of geometric parameters of the microstructures on wettability of the grating sufaces are investigated. 展开更多
关键词 MICROTEXTURE superhydrophobicITY composite surface WETTABILITY bearing lubrication
下载PDF
Fabrication of Stable Superhydrophobic Cupric Hydroxide Surface with Hierarchical Structure on Copper Substrate
15
作者 刘红芹 徐文国 卢士香 《Journal of Beijing Institute of Technology》 EI CAS 2009年第3期339-344,共6页
Cupric hydroxide films with a new hierarchical architecture consisting of beautiful nanotubes and nanoflowers were directly fabricated on copper substrate via a solution-immersion process at a constant temperature of ... Cupric hydroxide films with a new hierarchical architecture consisting of beautiful nanotubes and nanoflowers were directly fabricated on copper substrate via a solution-immersion process at a constant temperature of 23 ℃. Stable superhydrophobic Cu(OH)2 surface was obtained after Cu(OH)2 films were modified with hydrolyzed 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (CsH4CI3F13Si, FOTMS). The surface morphology and composition of the film were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. Result shows that the surface of Cu(OH)2 films directly grown on copper substrate was hydrophilic, whereas the modified Cu(OH)2 films exhibited the superhydrophobicity with a water contact angle (CA) of about 160.8°, as well as a small sliding angle (SA) of about 1°. The special hierarchical structure, along with the slow surface energy leads to the high superhydrophobicity of the surface. 展开更多
关键词 Cu(OH)2 films hierarchical architecture superhydrophobic surface contact angle
下载PDF
Early Season Development of Micro/Nano-Morphology and Superhydrophobic Wetting Properties on Aspen Leaf Surfaces
16
作者 George Christopher Tranquada Jared Jennings Victor Uwe Erb 《American Journal of Plant Sciences》 2015年第13期2197-2208,共12页
The rapid growth and early development period of the dual-scale surface topography was studied on the adaxial leaf surfaces of two aspen tree species with non-wetting leaves: the columnar European aspen (Populus tremu... The rapid growth and early development period of the dual-scale surface topography was studied on the adaxial leaf surfaces of two aspen tree species with non-wetting leaves: the columnar European aspen (Populus tremula “Erecta”) and quaking aspen (Populus tremuloides). Particular attention was focused on the formation of micro- and nano-scale asperities on their cuticles, which was correlated with the development of superhydrophobic wetting behaviour. Measurements of the wetting properties (contact angle and tilt-angle) provided an indication of the degree of hydrophobicity of their cuticles. Scanning electron microscopy and optical profilometry micrographs were used to follow the growth and major morphological changes of micro-scale papillae and nano-scale epicuticular wax (ECW) crystals, which led to a significant improvement in non-wetting behaviour. Both species exhibited syntopism in the form of small and larger nano-scale ECW platelet morphologies. These findings provide additional support for earlier suggestions that due to fluctuations in leaf hydrophobicity throughout the growing season, canopy storage capacity may also vary considerably throughout this time period. 展开更多
关键词 COLUMNAR European ASPEN LEAVES DEVELOPMENT of superhydrophobic Leaf surfaces Epicuticular WAX Morphologies Nano-Scale WAX Crystals Quaking ASPEN LEAVES
下载PDF
Application of Superhydrophobic Surface on Boiling Heat Transfer Characteristics of Nanofluids
17
作者 Cong Qi Yuxing Wang +2 位作者 Zi Ding Jianglin Tu Mengxin Zhu 《Energy Engineering》 EI 2021年第4期825-852,共28页
Boiling heat transfer is a mode using the phase change of working medium to strengthen the heat exchange due to its good heat exchange capability,and it is widely used in heat exchange engineering.Nanofluids have been... Boiling heat transfer is a mode using the phase change of working medium to strengthen the heat exchange due to its good heat exchange capability,and it is widely used in heat exchange engineering.Nanofluids have been used in the direction of enhanced heat transfer for their superior thermophysical property.The wetting,spreading and ripple phenomena of superhydrophobic surfaces widely exist in nature and daily life.It has great application value for engineering technology.In this article,the boiling heat exchange characteristics of nanofluids on superhydrophobic surface are numerically studied.It was found that with the increase of superheating degree,the steam volume ratio of unmodified heated surface increases to saturation,while the steam volume and evaporation ratio of modified superhydrophobic surface increase firstly and then decrease.At the same time,bubbles are generated and accumulated more fully on superhydrophobic surface.It was also found that nanofluids with low viscosity are more affected by superhydrophobic surface characteristics,and the increase is more significant with high superheating degree,and the superhydrophobic surface is beneficial to enhancing boiling heat exchange.Compared with the simulation results,it could be concluded that the boiling heat exchange performance of CuO-water nano-fluids on the modified superhydrophobic surface is better than that of CuO-ethylene glycol nanofluids under high superheating degree. 展开更多
关键词 Nanofluids superhydrophobic surface pool boiling heat transfer numerical simulation
下载PDF
Wettability Control between Oleophobic/Superhydrophilic and Superoleophilic/Superhydrophobic Characteristics on the Modified Surface Treated with Fluoroalkyl End-Capped Oligomers/Micro-Sized Polystyrene Particle Composites
18
作者 Hideo Sawada Koki Arakawa Yuta Aomi 《Open Journal of Composite Materials》 2022年第1期41-55,共15页
Fluoroalkyl end-capped vinyltrimethoxysilane-<i><span style="font-family:Verdana;">N</span></i><span><span style="font-family:Verdana;">,</span><i>&l... Fluoroalkyl end-capped vinyltrimethoxysilane-<i><span style="font-family:Verdana;">N</span></i><span><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i></span><span style="font-family:Verdana;">-dimethylacrylamide cooli</span><span style="font-family:;" "=""><span style="font-family:Verdana;">gomer [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(CH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">-CHSi(OMe)</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(CH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">-CHC(=O)NMe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">;R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> = CF(CF</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)OC</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">F</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;">:</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] was synthesized by reaction of fluoroalkanoyl peroxide [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-C(=O)O-O(O=)C-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] with vinyltrimethoxysilane (VM) and </span><i><span style="font-family:Verdana;">N</span></i><span><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;">N</span></i></span><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;">dimethylacrylamide (DMAA). The modified glass surface treated with the</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> cooligomeric nanoparticles [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] prepared under the sol-gel reaction of the cooligomer under alkaline conditions was found to exhibit an oleophobic/superhydrophilic property, although the corresponding fluorinated homooligomeric nanoparticles [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">] afforded an </span><span style="font-family:Verdana;">oleophobic/hydrophobic property on the modified surface under similar </span><span style="font-family:Verdana;">con</span><span><span style="font-family:Verdana;">ditions. R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/</span><b><i><span style="font-family:Verdana;">PSt</span></i></b><span style="font-family:Verdana;"> (micro-sized</span></span> <span style="font-family:Verdana;">polystyrene particles) composites, which were prepared by the sol-gel reac</span><span style="font-family:Verdana;">tions of the corresponding homooligomer and cooligomer in the presence of </span><b><i><span style="font-family:Verdana;">PSt </span></i></b><span style="font-family:Verdana;">particle under alkaline conditions, provided an oleophobic/superhydrophilic </span><span style="font-family:Verdana;">property on the modified surface. However, it was demonstrated that the</span><span><span style="font-family:Verdana;"> surface wettability on the modified surface treated with the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-</span></span><span><span style="font-family:Verdana;">SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">x</span></sub></i><span style="font-family:Verdana;">-(DMAA)</span><i><sub><span style="font-family:Verdana;">y</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/</span><b><i><span style="font-family:Verdana;">PSt</span></i></b><span style="font-family:Verdana;"> composites changes dramatically from oleophobic/superhydrophilic to superoleophilic/superhydrophilic </span><span style="font-family:Verdana;">and superoleophilic/superhydrophobic characteristics, increasing with </span><span style="font-family:Verdana;">greater </span><span><span style="font-family:Verdana;">feed ratios (mg/mg) of the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> homooligomer in homooligo</span></span><span style="font-family:Verdana;">mer/cooligo</span></span><span style="font-family:Verdana;">mer from 0 to 100 in the preparation of the composites. Such controlled surfac</span> 展开更多
关键词 Fluorinated Oligomeric Composite Micro-Sized Polystyrene Particle surface Modification surface Wettability Change Oleophobic/Superhydrophilic Property Superoleophilic/superhydrophobic Property
下载PDF
Modeling Superhydrophobic Contact Angles and Wetting Transition 被引量:9
19
作者 Nan Gao, Yuying YanDBE, Faculty of Engineering, University of Nottingham, NGl 2RD, UK 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第4期335-340,共6页
It is well known that surface roughness has a very important effect on superhydrophobicity.The Wenzel and Cassie-Baxter models,which correspond to the homogeneous and heterogeneous wetting respectively,are currently p... It is well known that surface roughness has a very important effect on superhydrophobicity.The Wenzel and Cassie-Baxter models,which correspond to the homogeneous and heterogeneous wetting respectively,are currently primary instructions for designing superhydrophobic surfaces.However,the particular drop shape that a drop exhibits might depend on how it is formed. A water drop can occupy multiple equilibrium states,which relate to different local minimal energy.In some cases,both equilibrium states can even co-exist on a same substrate.Thus the apparent contact angles may vary and have different values.We discuss how the Wenzel and Cassie-Baxter equations determine the homogeneous and heterogeneous wetting theoretically. Contact angle analysis on hierarchical surface structure and contact angle hysteresis has been put specific attention.In particular, we study the energy barrier of transition from Cassie-Baxter state to Wenzel state,based on existing achievement by previous researchers,to determine the possibility of the transition and how it can be interpreted.It has been demonstrated that surface roughness and geometry will influence the energy required for a drop to get into equilibrium,no matter it is homogeneous or heterogeneous wetting. 展开更多
关键词 superhydrophobic surface contact angle wetting transition energy balance biomimetics
下载PDF
Preparation of Material Surface Structure Similarto Hydrophobic Structure of Lotus Leaf 被引量:1
20
作者 CAO Feng GUAN Zisheng LI Dongxu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期513-517,共5页
Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (P... Nano/micro replication, a technique widely applied in the microelectronics field, was introduced to prepare the hydrophobic bionics microstructure on material surface. Poly(vinyl alcohol) (PVA) and polystyrene (PS) moulds of the mastoid microstructure on lotus leaf surface were prepared respectively by the nano/micro replication technology. And poly(dimethylsiloxane) (PDMS) replicas with the mastoid-like microstructure were prepared from these two kinds of polymer moulds. Scanning electronic microscope (SEM) was employed to investigate the morphology and microstructures on moulds and replicas. Both the static and dynamic contact angles between water droplet and PDMS replicas' surface were also measured. As a result, similar microstructure can be observed clearly on the surface of PDMS replicas and the static contact angle on PDMS replicas was enhanced dramatically by the existence of these microstructures. 展开更多
关键词 hydrophobic BIONICS surface structure nano/micro replication
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部