A series of hydrophobically associating polyacrylamides modified by small amounts (〈 3 mol%) of a self- associative cationic monomer 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA) as hydr...A series of hydrophobically associating polyacrylamides modified by small amounts (〈 3 mol%) of a self- associative cationic monomer 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA) as hydrophobe were synthesized by radical copolymerization in aqueous solutions without external surfactants. The resulting eopolymers containing a multiblock structure exhibited a high tendency for hydrophobic association and a high thickening capacity. Solution properties and aggregation structures were investigated by viscometry and fluorescence technique. The high viscosity enhancement was found as the polymer concentration beyond a critical value c* and strongly depended on the copolymer microstructures. The number and length of hydrophobic microblocks within the copolymer backbones could be controlled by changing the AEBA concentration in copolymerization system. Addition of salt induced more hydrophobic association and viscosity enhancement. The synthesis method used was simple and environmentally friendly without any external surfactant contamination in comparison with the conventional micellar copolymerization.展开更多
文摘A series of hydrophobically associating polyacrylamides modified by small amounts (〈 3 mol%) of a self- associative cationic monomer 4-(2-(acryloyloxy) ethoxy) benzyl tri-ethyl ammonium bromide (AEBA) as hydrophobe were synthesized by radical copolymerization in aqueous solutions without external surfactants. The resulting eopolymers containing a multiblock structure exhibited a high tendency for hydrophobic association and a high thickening capacity. Solution properties and aggregation structures were investigated by viscometry and fluorescence technique. The high viscosity enhancement was found as the polymer concentration beyond a critical value c* and strongly depended on the copolymer microstructures. The number and length of hydrophobic microblocks within the copolymer backbones could be controlled by changing the AEBA concentration in copolymerization system. Addition of salt induced more hydrophobic association and viscosity enhancement. The synthesis method used was simple and environmentally friendly without any external surfactant contamination in comparison with the conventional micellar copolymerization.