The Lancnag Mekong River is the most important international river across China and Southeast Asia, If it is developed according to 'Great Mekong Subregional Cooperation Plan' [9] prepared by ADB, the area di...The Lancnag Mekong River is the most important international river across China and Southeast Asia, If it is developed according to 'Great Mekong Subregional Cooperation Plan' [9] prepared by ADB, the area directly affected will be up to over 2.32 million km 2, the population over 220 million, and the natural environment, and socio-economic conditions within a large area will be greatly changed. 'Agreement on Cooperation for Sustainable Development of Mekong Basin' signed by the four riparian countries along the lower Mekong River on April 5, 1995 provides a new opportunity for sustainable development of the Basin. According to preliminary analysis, if the multipurpose utilization of the water resources is the target for carrying out integrated planning and management, and the efforts are made 1) to focus on energy exploitation on the Lancang River Mainstream and the tributaries of the lower Mekong River; 2) to build gated weirs at Tonle Sam; 3) to construct spillways at the Mekong Delta; 4) to facilitate flood dykes in big cities and on both banks of the mainstream which are concentrated with population and farmland and liable to be flooded, and 5) to strengthen networks for forecasting hydrological and meteorological conditions, then all problems such as power demand, irrigation, flood, salt water intrusion as well as acid water erosion to soil could be solved without constructing large cascaded stations and dams on the lower Mekong Mainstream. This will not only avoid input of great number of fund, large scale resettlement and land inundation, but also prevent aquatic organisms living in Mekong River from being injured due to dam construction, and promote the sustainable development of the Basin.展开更多
Analysis of water supplies and demand over the past 50 years in the Gavkhuni River Basin(GRB) indicate that despite large investments in water resources development the basin remains just as vulnerable to drought as...Analysis of water supplies and demand over the past 50 years in the Gavkhuni River Basin(GRB) indicate that despite large investments in water resources development the basin remains just as vulnerable to drought as it always has been. During the period of analysis two transbasin diversions and a storage reservoir have been constructed which have more or less doubled the annual supply to water to the basin. But with each water resource development extractive capacity for irrigation, urban and industrial use has increased by the same amount, so that all new water is allocated as soon as it is available. The most recent developments, since 1980, have actually increased vulnerability to drought because extractive capacity is greater than average flow into the basin. Whenever demand exceeds supply all water is extracted from the basin and the tail end dries up. During the past 50 years flows into the salt pan at the downstream end of the basin have been negligible for more than half the time. Prospects for the future are bleak because once the current phase of water resources development is completed no further water supplies are likely, but demand continues to rise at a steady rate. Ultimately agriculture will have to concede water to urban, industrial and environmental demands.展开更多
The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to m...The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.展开更多
Mineral resources exploitation significantly affects the spatial structure and evolutive trend of urbanization in arid areas.In this study,the spatial autocorrelation method and the spatial computation model were used...Mineral resources exploitation significantly affects the spatial structure and evolutive trend of urbanization in arid areas.In this study,the spatial autocorrelation method and the spatial computation model were used to investigate the spatial impacts of mineral resources excavation and processing on comprehensive level of urbanization in the Tarim River Basin,Xinjiang,China for the years of 2000,2006 and 2008.The results are as follows:1)There was a spatial correlation of the development of mineral resources industry and the comprehensive level of urbanization in 2006 and 2008,with the spatial concentration trend rising significantly in 2006 and decreasing in 2008.2)The patterns of local spatial concentration of mineral resources industry and of the comprehensive level of urbanization were relatively stable,and the two patterns showed signs of spatial correlationship.The higher was the degree of the concentration of mineral resources industry,the stronger was its impact on the spatial clustering of urbanization.3)In 2000, mineral resources excavation and processing had a significant positive impact on the comprehensive level of urbanization in the region but not in its adjacent regions.However,in 2008,mineral resources excavation and processing significantly raised the comprehensive level of urbanization not only in the region but also in its neighboring regions.This research demonstrates that the development of mineral resources industry can strongly affect the trends and spatial patterns of urbanization.展开更多
The Lancang–Mekong River(LMR)is an important transboundary river that originates from the Qinghai–Tibet Plateau,China and flows through six nations before draining into the South China Sea.Knowledge about the past a...The Lancang–Mekong River(LMR)is an important transboundary river that originates from the Qinghai–Tibet Plateau,China and flows through six nations before draining into the South China Sea.Knowledge about the past and future changes in climate and water for this basin is critical in order to support regio-nal sustainable development.This paper presents a comprehensive review of the scientific progress that has been made in understanding the changing climate and water systems,and discusses outstanding challenges and future research opportunities.The existing literature suggests that:①The warming rate in the Lancang–Mekong River Basin(LMRB)is higher than the mean global warming rate,and it is higher in its upper portion,the Lancang River Basin(LRB),than in its lower portion,the Mekong River Basin(MRB);②historical precipitation has increased over the LMRB,particularly from 1981 to 2010,as the wet season became wetter in the entire basin,while the dry season became wetter in the LRB but drier in the MRB;③in the past,streamflow increased in the LRB but slightly decreased in the MRB,and increases in streamflow are projected for the future in the LMRB;and④historical streamflow increased in the dry season but decreased in the wet season from 1960 to 2010,while a slight increase is projected during the wet season.Four research directions are identified as follows:①investigation of the impacts of dams on river flow and local communities;②implementation of a novel water–energy–food–ecology(WEFE)nexus;③integration of groundwater and human health management with water resource assessment and management;and④strengthening of transboundary collaboration in order to address sustainable development goals(SDGs).展开更多
The water resource carrying capacity(WRCC)in river basin changes dynamically under climate change,economic development,and technological advancement.Climate change affects hydrological processes and spatial/temporal d...The water resource carrying capacity(WRCC)in river basin changes dynamically under climate change,economic development,and technological advancement.Climate change affects hydrological processes and spatial/temporal distribution of water resources;while economic develo-ment and technological advancement can also affect the balance of water resources systems.Under climate change,economic development,and technological advancement,itis of great significance to explore the dynamic behavior of WRCC in river basins.This will help to alleviate water resources security issues and build a sustainable water resources system.This study was carried out to evaluate the dynamic WRCC using the"climate,economics,and technology-control objective inversion mode",which used total water consumption,water-use efficiency,and restrained total pollutant control in the water functional area as boundary conditions.This study was conducted on the Keriya River Basin,a sub-catchment located in southem margin of the Taklimakan Desert.The WRCC in the Keriya River Basin in 2015 was calculated,and the trends in the short term(2020),middle tem(2030),and long term(2050)were predicted.The results revealed that climate change factors have a positive effect on WRCC in the Keriya River Basin,which leads to an increase in total water resources.Economic and technological development exhibits an overall positive effect,while increasing in water consumption and sewage discharge exhibit a negative effect.展开更多
The protection of the Yangtze River Basin is a top priority in China,and the National People's Congress(NPC)Standing Committee has started to draft a new protection legislation specifically for the Yangtze River B...The protection of the Yangtze River Basin is a top priority in China,and the National People's Congress(NPC)Standing Committee has started to draft a new protection legislation specifically for the Yangtze River Basin.The Basin forms the epicenter of environmental,social,and economic life.Any efforts to protect the Basin must accommodate several competing interests from a multiplicity of interested parties and stakeholders such as local governments,villages,and business enterprises.Current relevant institutions and organizations are unable to sufficiently ensure environmental protection and green development in the Basin.The NPC Standing Committee must thus adopt a more holistic approach when creating new protection legislations aimed at the Yangtze River Basin.展开更多
Through nearly seven months of investigation and research, detailed information and data on vegetation resources, land resources and other ecological resources in the Taojia small river basin were obtained, and the da...Through nearly seven months of investigation and research, detailed information and data on vegetation resources, land resources and other ecological resources in the Taojia small river basin were obtained, and the data were analyzed and processed. The results show that due to the destruction of forest vegetation, the steep slope reclamation and water channel leakage in the Taojia small river basin, well fields and forest land at multiple sites in the basin have been buried by mud and rock, and abundant forest vegetation distributed in the middle and upper reaches has reduced to the situation of a forest coverage rate of only 15.5%. As a result, a vicious circle of "ecological destruction, soil erosion, farmland reduction, poverty, steep slope cultivation, ecological destruction" has been formed. Based on the analysis of the basic ecological background of the basin, six ecological restoration proposals such as planting soil and water conservation forests and fruit trees and blockading protection were proposed, in order to provide support for restoring the ecological environment of the basin and achieving sustainable development of the ecological environment within the basin.展开更多
文摘The Lancnag Mekong River is the most important international river across China and Southeast Asia, If it is developed according to 'Great Mekong Subregional Cooperation Plan' [9] prepared by ADB, the area directly affected will be up to over 2.32 million km 2, the population over 220 million, and the natural environment, and socio-economic conditions within a large area will be greatly changed. 'Agreement on Cooperation for Sustainable Development of Mekong Basin' signed by the four riparian countries along the lower Mekong River on April 5, 1995 provides a new opportunity for sustainable development of the Basin. According to preliminary analysis, if the multipurpose utilization of the water resources is the target for carrying out integrated planning and management, and the efforts are made 1) to focus on energy exploitation on the Lancang River Mainstream and the tributaries of the lower Mekong River; 2) to build gated weirs at Tonle Sam; 3) to construct spillways at the Mekong Delta; 4) to facilitate flood dykes in big cities and on both banks of the mainstream which are concentrated with population and farmland and liable to be flooded, and 5) to strengthen networks for forecasting hydrological and meteorological conditions, then all problems such as power demand, irrigation, flood, salt water intrusion as well as acid water erosion to soil could be solved without constructing large cascaded stations and dams on the lower Mekong Mainstream. This will not only avoid input of great number of fund, large scale resettlement and land inundation, but also prevent aquatic organisms living in Mekong River from being injured due to dam construction, and promote the sustainable development of the Basin.
文摘Analysis of water supplies and demand over the past 50 years in the Gavkhuni River Basin(GRB) indicate that despite large investments in water resources development the basin remains just as vulnerable to drought as it always has been. During the period of analysis two transbasin diversions and a storage reservoir have been constructed which have more or less doubled the annual supply to water to the basin. But with each water resource development extractive capacity for irrigation, urban and industrial use has increased by the same amount, so that all new water is allocated as soon as it is available. The most recent developments, since 1980, have actually increased vulnerability to drought because extractive capacity is greater than average flow into the basin. Whenever demand exceeds supply all water is extracted from the basin and the tail end dries up. During the past 50 years flows into the salt pan at the downstream end of the basin have been negligible for more than half the time. Prospects for the future are bleak because once the current phase of water resources development is completed no further water supplies are likely, but demand continues to rise at a steady rate. Ultimately agriculture will have to concede water to urban, industrial and environmental demands.
基金supported by the National Basic Research Program of China (2010CB951004)a project of Xinjiang Key Lab of Water Cycle and Utilization in Arid Zone,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences (XJYS0907-2009-02)
文摘The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.
基金Under the auspices of Chinese Academy of Sciences Western Doctor Special Financial Aid(No.XBBS200812)National Natural Science Foundation of China(No.40601032)
文摘Mineral resources exploitation significantly affects the spatial structure and evolutive trend of urbanization in arid areas.In this study,the spatial autocorrelation method and the spatial computation model were used to investigate the spatial impacts of mineral resources excavation and processing on comprehensive level of urbanization in the Tarim River Basin,Xinjiang,China for the years of 2000,2006 and 2008.The results are as follows:1)There was a spatial correlation of the development of mineral resources industry and the comprehensive level of urbanization in 2006 and 2008,with the spatial concentration trend rising significantly in 2006 and decreasing in 2008.2)The patterns of local spatial concentration of mineral resources industry and of the comprehensive level of urbanization were relatively stable,and the two patterns showed signs of spatial correlationship.The higher was the degree of the concentration of mineral resources industry,the stronger was its impact on the spatial clustering of urbanization.3)In 2000, mineral resources excavation and processing had a significant positive impact on the comprehensive level of urbanization in the region but not in its adjacent regions.However,in 2008,mineral resources excavation and processing significantly raised the comprehensive level of urbanization not only in the region but also in its neighboring regions.This research demonstrates that the development of mineral resources industry can strongly affect the trends and spatial patterns of urbanization.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20060402)the National Natural Science Foundation of China(41625001 and 41571022)+2 种基金the Pengcheng Scholar Program of Shenzhen,the National High-Level Talents Special Support Plan(“Ten Thousand Talents Plan”),the High-level Special Funding of the Southern University of Science and Technology(G02296302 and G02296402)the Leading Innovative Talent Program for young and middle-aged scholars by the Ministry of Science and Technologythe National Science Foundation(CAREER Award,1752729).
文摘The Lancang–Mekong River(LMR)is an important transboundary river that originates from the Qinghai–Tibet Plateau,China and flows through six nations before draining into the South China Sea.Knowledge about the past and future changes in climate and water for this basin is critical in order to support regio-nal sustainable development.This paper presents a comprehensive review of the scientific progress that has been made in understanding the changing climate and water systems,and discusses outstanding challenges and future research opportunities.The existing literature suggests that:①The warming rate in the Lancang–Mekong River Basin(LMRB)is higher than the mean global warming rate,and it is higher in its upper portion,the Lancang River Basin(LRB),than in its lower portion,the Mekong River Basin(MRB);②historical precipitation has increased over the LMRB,particularly from 1981 to 2010,as the wet season became wetter in the entire basin,while the dry season became wetter in the LRB but drier in the MRB;③in the past,streamflow increased in the LRB but slightly decreased in the MRB,and increases in streamflow are projected for the future in the LMRB;and④historical streamflow increased in the dry season but decreased in the wet season from 1960 to 2010,while a slight increase is projected during the wet season.Four research directions are identified as follows:①investigation of the impacts of dams on river flow and local communities;②implementation of a novel water–energy–food–ecology(WEFE)nexus;③integration of groundwater and human health management with water resource assessment and management;and④strengthening of transboundary collaboration in order to address sustainable development goals(SDGs).
文摘The water resource carrying capacity(WRCC)in river basin changes dynamically under climate change,economic development,and technological advancement.Climate change affects hydrological processes and spatial/temporal distribution of water resources;while economic develo-ment and technological advancement can also affect the balance of water resources systems.Under climate change,economic development,and technological advancement,itis of great significance to explore the dynamic behavior of WRCC in river basins.This will help to alleviate water resources security issues and build a sustainable water resources system.This study was carried out to evaluate the dynamic WRCC using the"climate,economics,and technology-control objective inversion mode",which used total water consumption,water-use efficiency,and restrained total pollutant control in the water functional area as boundary conditions.This study was conducted on the Keriya River Basin,a sub-catchment located in southem margin of the Taklimakan Desert.The WRCC in the Keriya River Basin in 2015 was calculated,and the trends in the short term(2020),middle tem(2030),and long term(2050)were predicted.The results revealed that climate change factors have a positive effect on WRCC in the Keriya River Basin,which leads to an increase in total water resources.Economic and technological development exhibits an overall positive effect,while increasing in water consumption and sewage discharge exhibit a negative effect.
基金supported by the Chinese Fund for the Humanities and Social Sciences(15ZDB177).
文摘The protection of the Yangtze River Basin is a top priority in China,and the National People's Congress(NPC)Standing Committee has started to draft a new protection legislation specifically for the Yangtze River Basin.The Basin forms the epicenter of environmental,social,and economic life.Any efforts to protect the Basin must accommodate several competing interests from a multiplicity of interested parties and stakeholders such as local governments,villages,and business enterprises.Current relevant institutions and organizations are unable to sufficiently ensure environmental protection and green development in the Basin.The NPC Standing Committee must thus adopt a more holistic approach when creating new protection legislations aimed at the Yangtze River Basin.
基金Supported by National Technology R&D Program(0BAC06B02)
文摘Through nearly seven months of investigation and research, detailed information and data on vegetation resources, land resources and other ecological resources in the Taojia small river basin were obtained, and the data were analyzed and processed. The results show that due to the destruction of forest vegetation, the steep slope reclamation and water channel leakage in the Taojia small river basin, well fields and forest land at multiple sites in the basin have been buried by mud and rock, and abundant forest vegetation distributed in the middle and upper reaches has reduced to the situation of a forest coverage rate of only 15.5%. As a result, a vicious circle of "ecological destruction, soil erosion, farmland reduction, poverty, steep slope cultivation, ecological destruction" has been formed. Based on the analysis of the basic ecological background of the basin, six ecological restoration proposals such as planting soil and water conservation forests and fruit trees and blockading protection were proposed, in order to provide support for restoring the ecological environment of the basin and achieving sustainable development of the ecological environment within the basin.