Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro...Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.展开更多
Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test ...Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks.展开更多
In this paper we study the hydrostatic limit of the Navier-Stokes-alpha model in a very thin strip domain.We derive some Prandtl-type limit equations for this model and we prove the global well-posedness of the limit ...In this paper we study the hydrostatic limit of the Navier-Stokes-alpha model in a very thin strip domain.We derive some Prandtl-type limit equations for this model and we prove the global well-posedness of the limit system for small initial conditions in an appropriate analytic function space.展开更多
While high-hydrostatic pressure(HHP)has successfully been applied to the pasteurization of fruit and vegetable juice beverages,their qualitystable shelf life during storage has not been fully elucidated.Therefore,we i...While high-hydrostatic pressure(HHP)has successfully been applied to the pasteurization of fruit and vegetable juice beverages,their qualitystable shelf life during storage has not been fully elucidated.Therefore,we investigated the effect of HHP(550 MPa/10 min)treatment on polyphenols,carotenoids,ascorbic acids,and antioxidant capacity in tomato juice and their changes during 4-week refrigerated storage.Hightemperature short-time(HTST,110°C/8.6 s)treatment was used as a control.The results revealed a significantly greater presence of polyphenols,carotenoids,ascorbic acid content,and antioxidant capacity in tomato juice after HHP processing than after HTST processing.However,the total carotenoids and total phenolic content in HHP-treated tomato juice decreased dramatically and approached that in the HTST-treated tomato juice after 1 week of storage.Therefore,HHP’s advantage in maintaining antioxidant compounds and capacity was only evident during the first week of storage in tomato juice.Nevertheless,the post-storage caffeic acid,quercetin,ferulic acid,and p-coumaric acid concentrations were 8.31,4.77,1.86,and 6.84μg/g higher in the HHP-treated than in HTST-treated tomato juice,respectively.This study provides a new perspective for predicting HHP products'quality-stable shelf life.展开更多
High hydrostatic pressure has become a non-thermal alternative to thermal pasteurization in dairy product processing.In this study,we investigated the effects of the treatment of high hydrostatic pressure on the bacte...High hydrostatic pressure has become a non-thermal alternative to thermal pasteurization in dairy product processing.In this study,we investigated the effects of the treatment of high hydrostatic pressure on the bacterial composition in donkey milk using high-throughput sequencing technology and culture-dependent methods.Compared with the microbial composition in the untreated donkey milk,the relative percentage of Pseudomonas and Acinetobacter in donkey milk after high hydrostatic pressure was significantly decreased by 4.92%and 4.82%,respectively.Beta diversity analysis demonstrated that the treatment of high hydrostatic pressure affected the microbial composition in donkey milk significantly.The potential probiotic Enterococcus casseliflavus isolated from the untreated donkey milk has a good acidifying ability.This study revealed the effects of high hydrostatic pressure treatment on the microbial composition in donkey milk,exhibiting its practical industrial application and the potential use of biological resources in the future.展开更多
Seafood,as a primary high-quality protein source,plays an increasingly vital role in diets around the world,while seafood allergy is a worldwide health problem that affects the quality of life and may even threaten li...Seafood,as a primary high-quality protein source,plays an increasingly vital role in diets around the world,while seafood allergy is a worldwide health problem that affects the quality of life and may even threaten lives.High hydrostatic pressure(HHP),a novel non-thermal processing technology,shows the unique potential in alleviating seafood allergenicity.This comment provides a brief introduction of potential of high hydrostatic pressure in reducing the allergenicity of seafood.展开更多
Based on existing triaxial compression experimental data,a new empirical failure criterion with wide applicability was proposed considering hydrostatic pressure,second stress invariance,and maximum shear stress.Four f...Based on existing triaxial compression experimental data,a new empirical failure criterion with wide applicability was proposed considering hydrostatic pressure,second stress invariance,and maximum shear stress.Four fitting evaluation indicators were used to verify the consistency of the new failure criterion,and the differences with the other 6 failure criteria were discussed.The characteristics of the new failure criteria in the principal stress space were finally analyzed.The results indicate that(1)the new failure criterion exhibits strong predictive ability for triaxial experiments and has good applicability for both intact and jointed rocks;(2)the influence of hydrostatic pressure on the failure surface exhibits a non-linear trend,and different hydrostatic pressure also exhibits different distribution patterns on the deviatoric stress plane,with a distribution characteristic pattern of hexagonal snowflake-regular hexagon.The maximum shear stress has a torsional effect on the new criterion,in the three-dimensional failure surface.The parameters a and b of the rock have an impact on the failure surface morphology of the new criterion function on the offset surface.展开更多
In order to study the laws of the extrusion pressure changing with the extrusion parameters in the process of hydrostatic extrusion for the tungsten alloys, the large deformation elasto plastic theory and the sof...In order to study the laws of the extrusion pressure changing with the extrusion parameters in the process of hydrostatic extrusion for the tungsten alloys, the large deformation elasto plastic theory and the software of ANSYS 5 5 are used to carry out the numerical simulation research. The laws of the extrusion pressure changing with the extrusion parameters, such as the die angle, extrusion ratio, and friction coefficient, are obtained. The simulation results are in good agreement with the experimental ones, and the simulated results are believable.展开更多
Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculati...Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculating the viscoelastic response to surface loading.In one,the elastic equation of motion is converted to a viscoelastic equation using the Correspondence Principle.In the other,elastic deformation is added to the viscous flow as isostatic adjustment proceeds.The two modeling methods predict adjustment histories that are different enough to potentially impact the interpretation of the observed glacial isostatic adjustment(GIA).The differences arise from buoyancy and whether fluid displacements are subjected to hydrostatic pre-stress.The methods agree if they use the same equations and boundary conditions.The origin of the differences is determined by varying the boundary conditions and pre-stress application.展开更多
The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with ...The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with moderate load. The static and dynamic characteristics of the guide have been studied by using some theoretical, numerical and experimental approaches, and some methods and measures have been proposed to improve its performances. The hydrostatic guide based on progressive mengen(PM) flow controller is especially suitable for the heavy numerical control(NC) machine tools. However, few literatures about the research on the static and dynamic characteristics of the hydrostatic guides based on PM flow controller are reported. In this paper, the formulae are derived for analyzing the static and dynamic characteristics of hydrostatic guides with rectangle pockets and PM flow controller according to the theory of hydrostatic bearing. On the basis of the analysis of hydrostatic bearing with circular pocket, some equations are derived for solving the static pressure, volume pressure and squeezing pressure which influence the dynamic characteristics of hydrostatic guides with rectangle pocket. The function and the influencing factors of three pressures are clarified. The formulae of amplitude-frequency characteristics and dynamic stiffness of the hydrostatic guide system are derived. With the help of software MATLAB, programs are coded with C++ language to simulate numerically the static and dynamic characteristics of the hydrostatic guide based on PM flow controller. The simulation results indicate that the sensitive oil volume between the outlet of the PM flow controller and the guide pocket has the greatest influence on the characteristics of the guide, and it should be reduced as small as possible when the field working condition is met. Choosing the oil with a greater viscosity is also helpful in improving the dynamic performance of hydrostatic guides. The research work has instructing significance for analyzing and designing the guide with PM flow controller.展开更多
Capability of a novel severe plastic deformation(SPD)method of hydrostatic cyclic extrusion compression(HCEC)for processing of hcp metallic rods with high length to diameter ratios was investigated.The process was con...Capability of a novel severe plastic deformation(SPD)method of hydrostatic cyclic extrusion compression(HCEC)for processing of hcp metallic rods with high length to diameter ratios was investigated.The process was conducted in two consecutive cycles on the AZ91 magnesium alloy,and microstructural evolution,mechanical properties and corrosion behavior were investigated.The results showed that the HCEC process was successively capable of producing ultrafine-grained long magnesium rods.Its ability in improving strength and ductility simultaneously was also shown.The ultimate tensile strength and elongation to failure of the sample after the second cycle of the process were improved to be 2.46 and 3.8 times those of the as-cast specimen,respectively.Distribution of the microhardness after the second cycle was uniform and its average value was increased by 116%.The potentials derived from the polarization curves were high and the currents were much low for the processed samples.Also,the diameter of the capacitive arcs derived from the Nyquist curves was large in the HCEC processed samples.The finite element analysis indicated the independency of HCEC load from the length in comparison to the conventional CEC.HCEC is a unique SPD method,which can produce long ultrafine-grained rods with a combination of superior mechanical and corrosion properties.展开更多
Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HC...Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.展开更多
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are ...Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.展开更多
In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the...In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the influence of load-indcued errors on machining accuracy, an identification model of load-induced errors based on the deformation caused by applied load of hydrostatic turntable of computerized numerical control(CNC) gantry milling heavy machine is proposed. Based on multi-body system theory and screw theory, the space machining accuracy model of heavy duty machine tool is established with consideration of identified load-induced errors. And then, the influence of load-induced errors on space machining accuracy and the roundness error of a milled hole is analyzed. The analysis results show that load-induced errors have a big influence on the roundness error of machined hole, especially when the center of the milled hole is far from that of hydrostatic turntable.展开更多
Hydrostatic spindles are increasingly used in precision machine tools. Thermal error is the key factor affecting the machining accuracy of the spindle, and research has focused on spindle thermal errors through examin...Hydrostatic spindles are increasingly used in precision machine tools. Thermal error is the key factor affecting the machining accuracy of the spindle, and research has focused on spindle thermal errors through examination of the influence of the temperature distribution, thermal deformation and spindle mode. However, seldom has any research investigated the thermal effects of the associated Couette flow. To study the heat transfer mechanism in spindle systems, the criterion of the heat transfer direction according to the temperature distribution of the Couette flow at different temperatures is deduced. The method is able to deal accurately with the significant phenomena occurring at every place where thermal energy flowed in such a spindle system. The variation of the motion error induced by thermal effects on a machine work-table during machining is predicated by establishing the thermo-mechanical error model of the hydrostatic spindle for a high precision machine tool. The flow state and thermal behavior of a hydrostatic spindle is analyzed with the evaluated heat power and the coefficients of the convective heat transfer over outer surface of the spindle are calculated, and the thermal influence on the oil film stiffness is evaluated. Thermal drift of the spindle nose is measured with an inductance micrometer, the thermal deformation data 1.35 μm after running for 4 h is consistent with the value predicted by the finite element analysis’s simulated result 1.28 μm, and this demonstrates that the simulation method is feasible. The thermal effects on the processing accuracy from the flow characteristics of the fluid inside the spindle are analyzed for the first time.展开更多
Hydrostatic guideways have various applications in precision machine tools due to their high motion accuracy. The analysis of motion straightness in hydrostatic guideways is generally ignoring the external load on the...Hydrostatic guideways have various applications in precision machine tools due to their high motion accuracy. The analysis of motion straightness in hydrostatic guideways is generally ignoring the external load on the slider. A variation force also exists, caused by the different working positions, together with the dead load of the slider and that of other auxiliary devices. The effect of working position on vertical motion straightness is investigated based on the equivalent static model, considering the error averaging effort of pressured oil film in open hydrostatic guideways. Open hydrostatic guideways in LGF1000 are analyzed with this approach. The theoretical results show that the slider has maximum vertical motion straightness when the working position is closer the guiderail of Y axis. The vertical motion straightness reaches a minimum value as the working position is located at the center of the two guiderails on the Y axis. The difference between the maximum and minimum vertical motion straightness is 34.7%. The smaller vertical motion straightness is attributed to the smaller spacing of the two pads centers, along the Y direction. The experimental results show that the vertical motion straightness is 4.15 μm/1200 mm, when the working position is located in the middle of the Xbeam, and 5.08 pro/1200 mm, when the working position is approaching the Y guiderails, denoting an increase of 18.3%. The changing trends of the measured results validate the correctness of the theoretical model. The research work can be used to reveal the variation law of accuracy of the open hydrostatic guideways, under different working positions, to predict the machining precision, and provides the basis for an error compensation strategy for gantry type grinding machines.展开更多
Response surface methodology (RSM) was employed in the present work and a second orderquadratic equation for high hydrostatic pressure (HHP) inactivation was built. Theadequacy of the model equation for predicting the...Response surface methodology (RSM) was employed in the present work and a second orderquadratic equation for high hydrostatic pressure (HHP) inactivation was built. Theadequacy of the model equation for predicting the optimum response values was verifiedeffectively by the validation data. Effects of temperature, pressure, and pressureholding time on HHP inactivation of Escherichia coli ATCC 8739 were explored. Byanalyzing the response surface plots and their corresponding contour plots as well assolving the quadratic equation, the optimum process parameters for inactivation E. coliof six log cycles were obtained as: temperature 32.2℃, pressure 346.4 MPa, and pressureholding time 12.6min.展开更多
The effect of hydrostatic pressure on the vibration dispersion characteristics of fluid-shell coupled structures was studied.Both fluid-loaded cylindrical shells and fluid-filled cylindrical shells were considered.Num...The effect of hydrostatic pressure on the vibration dispersion characteristics of fluid-shell coupled structures was studied.Both fluid-loaded cylindrical shells and fluid-filled cylindrical shells were considered.Numerical analysis was applied to solve the dispersion equations for shells filled with or loaded with fluid at various hydrostatic pressures.The results for external pressure showed that non-dimensional axial wave numbers are nearly independent when the pressure is below the critical level.The influence of internal pressure on wave numbers was found significant for the real branch s=1 and the complex branches of dispersion curves.The presence of internal pressure increased the cut on frequencies for the branch s=1 for high order wave modes.展开更多
The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitivel...The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitively estimate the dynamic ModeⅡfracture toughness KⅡCof rocks under a triaxial stress state.However,the method for determining the dynamic KⅡCof rocks under a triaxial stress has not been developed yet.With an optimal sample preparation,the short core in compression(SCC)method was designed and verified in this study to measure the dynamic KⅡCof Fangshan marble(FM)subjected to different hydrostatic pressures through a triaxial dynamic testing system.The formula for calculating the dynamic KⅡCof the rock SCC specimen under hydrostatic pressures was obtained by using the finite element method in combination with secondary cracks.The experimental results indicate that the failure mode of the rock SCC specimen under a hydrostatic pressure is the shear fracture and the KⅡCof FM increases as the loading rate.In addition,at a given loading rate the dynamic rock KⅡCis barely affected by hydrostatic pressures.Another important observation is that the dynamic fracture energy of FM enhances with loading rates and hydrostatic pressures.展开更多
In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of t...In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of the oil film thickness in various cutting forces are calculated and a relation model through theoretical analysis method is derived.The pressure field of the guide rail recess is simulated based on the finite volume method and demonstrated through experiments.The study is of vital theoretical significance for the improvement of machining accuracy of numerical control machines and the entire computer numerical control(CNC) equipment and provides valuable theoretical basis for the design of hydrostatic guide rail in engineering practice.展开更多
基金supported by the Doctoral Research Foundation of Bohai University (05013/0520bs006)the Science and Technology Project of“Unveiling and Commanding”Liaoning Province (2021JH1/10400033)the Scientific Research Project from Education Department of Liaoning Province (LJ2020010)。
文摘Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant Nos.42141010,51879184 and 12172253).
文摘Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks.
文摘In this paper we study the hydrostatic limit of the Navier-Stokes-alpha model in a very thin strip domain.We derive some Prandtl-type limit equations for this model and we prove the global well-posedness of the limit system for small initial conditions in an appropriate analytic function space.
基金This work was supported by National Key Technologies R&D Programs,China(grant numbers:2017YFD0400705 and 2018YFC1602202).
文摘While high-hydrostatic pressure(HHP)has successfully been applied to the pasteurization of fruit and vegetable juice beverages,their qualitystable shelf life during storage has not been fully elucidated.Therefore,we investigated the effect of HHP(550 MPa/10 min)treatment on polyphenols,carotenoids,ascorbic acids,and antioxidant capacity in tomato juice and their changes during 4-week refrigerated storage.Hightemperature short-time(HTST,110°C/8.6 s)treatment was used as a control.The results revealed a significantly greater presence of polyphenols,carotenoids,ascorbic acid content,and antioxidant capacity in tomato juice after HHP processing than after HTST processing.However,the total carotenoids and total phenolic content in HHP-treated tomato juice decreased dramatically and approached that in the HTST-treated tomato juice after 1 week of storage.Therefore,HHP’s advantage in maintaining antioxidant compounds and capacity was only evident during the first week of storage in tomato juice.Nevertheless,the post-storage caffeic acid,quercetin,ferulic acid,and p-coumaric acid concentrations were 8.31,4.77,1.86,and 6.84μg/g higher in the HHP-treated than in HTST-treated tomato juice,respectively.This study provides a new perspective for predicting HHP products'quality-stable shelf life.
基金This work was supported by National Natural Science Foundation of China(Grant No.31901798)the Open Project Program of the Beijing Laboratory of Food Quality and Safety,Beijing Technology and Business University(FQS-202101).
文摘High hydrostatic pressure has become a non-thermal alternative to thermal pasteurization in dairy product processing.In this study,we investigated the effects of the treatment of high hydrostatic pressure on the bacterial composition in donkey milk using high-throughput sequencing technology and culture-dependent methods.Compared with the microbial composition in the untreated donkey milk,the relative percentage of Pseudomonas and Acinetobacter in donkey milk after high hydrostatic pressure was significantly decreased by 4.92%and 4.82%,respectively.Beta diversity analysis demonstrated that the treatment of high hydrostatic pressure affected the microbial composition in donkey milk significantly.The potential probiotic Enterococcus casseliflavus isolated from the untreated donkey milk has a good acidifying ability.This study revealed the effects of high hydrostatic pressure treatment on the microbial composition in donkey milk,exhibiting its practical industrial application and the potential use of biological resources in the future.
文摘Seafood,as a primary high-quality protein source,plays an increasingly vital role in diets around the world,while seafood allergy is a worldwide health problem that affects the quality of life and may even threaten lives.High hydrostatic pressure(HHP),a novel non-thermal processing technology,shows the unique potential in alleviating seafood allergenicity.This comment provides a brief introduction of potential of high hydrostatic pressure in reducing the allergenicity of seafood.
基金supported by the National Natural Science Foundation of China(Nos.52004289 and U22A20165)the Fundamental Research Funds for the Central Universities(No.2022XJNY01)。
文摘Based on existing triaxial compression experimental data,a new empirical failure criterion with wide applicability was proposed considering hydrostatic pressure,second stress invariance,and maximum shear stress.Four fitting evaluation indicators were used to verify the consistency of the new failure criterion,and the differences with the other 6 failure criteria were discussed.The characteristics of the new failure criteria in the principal stress space were finally analyzed.The results indicate that(1)the new failure criterion exhibits strong predictive ability for triaxial experiments and has good applicability for both intact and jointed rocks;(2)the influence of hydrostatic pressure on the failure surface exhibits a non-linear trend,and different hydrostatic pressure also exhibits different distribution patterns on the deviatoric stress plane,with a distribution characteristic pattern of hexagonal snowflake-regular hexagon.The maximum shear stress has a torsional effect on the new criterion,in the three-dimensional failure surface.The parameters a and b of the rock have an impact on the failure surface morphology of the new criterion function on the offset surface.
文摘In order to study the laws of the extrusion pressure changing with the extrusion parameters in the process of hydrostatic extrusion for the tungsten alloys, the large deformation elasto plastic theory and the software of ANSYS 5 5 are used to carry out the numerical simulation research. The laws of the extrusion pressure changing with the extrusion parameters, such as the die angle, extrusion ratio, and friction coefficient, are obtained. The simulation results are in good agreement with the experimental ones, and the simulated results are believable.
文摘Modeling the earth's fluid and elastic response to the melting of the glaciers of the last ice age is the most direct way to infer the earth's radial viscosity profile.Here,we compare two methods for calculating the viscoelastic response to surface loading.In one,the elastic equation of motion is converted to a viscoelastic equation using the Correspondence Principle.In the other,elastic deformation is added to the viscous flow as isostatic adjustment proceeds.The two modeling methods predict adjustment histories that are different enough to potentially impact the interpretation of the observed glacial isostatic adjustment(GIA).The differences arise from buoyancy and whether fluid displacements are subjected to hydrostatic pre-stress.The methods agree if they use the same equations and boundary conditions.The origin of the differences is determined by varying the boundary conditions and pre-stress application.
文摘The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with moderate load. The static and dynamic characteristics of the guide have been studied by using some theoretical, numerical and experimental approaches, and some methods and measures have been proposed to improve its performances. The hydrostatic guide based on progressive mengen(PM) flow controller is especially suitable for the heavy numerical control(NC) machine tools. However, few literatures about the research on the static and dynamic characteristics of the hydrostatic guides based on PM flow controller are reported. In this paper, the formulae are derived for analyzing the static and dynamic characteristics of hydrostatic guides with rectangle pockets and PM flow controller according to the theory of hydrostatic bearing. On the basis of the analysis of hydrostatic bearing with circular pocket, some equations are derived for solving the static pressure, volume pressure and squeezing pressure which influence the dynamic characteristics of hydrostatic guides with rectangle pocket. The function and the influencing factors of three pressures are clarified. The formulae of amplitude-frequency characteristics and dynamic stiffness of the hydrostatic guide system are derived. With the help of software MATLAB, programs are coded with C++ language to simulate numerically the static and dynamic characteristics of the hydrostatic guide based on PM flow controller. The simulation results indicate that the sensitive oil volume between the outlet of the PM flow controller and the guide pocket has the greatest influence on the characteristics of the guide, and it should be reduced as small as possible when the field working condition is met. Choosing the oil with a greater viscosity is also helpful in improving the dynamic performance of hydrostatic guides. The research work has instructing significance for analyzing and designing the guide with PM flow controller.
文摘Capability of a novel severe plastic deformation(SPD)method of hydrostatic cyclic extrusion compression(HCEC)for processing of hcp metallic rods with high length to diameter ratios was investigated.The process was conducted in two consecutive cycles on the AZ91 magnesium alloy,and microstructural evolution,mechanical properties and corrosion behavior were investigated.The results showed that the HCEC process was successively capable of producing ultrafine-grained long magnesium rods.Its ability in improving strength and ductility simultaneously was also shown.The ultimate tensile strength and elongation to failure of the sample after the second cycle of the process were improved to be 2.46 and 3.8 times those of the as-cast specimen,respectively.Distribution of the microhardness after the second cycle was uniform and its average value was increased by 116%.The potentials derived from the polarization curves were high and the currents were much low for the processed samples.Also,the diameter of the capacitive arcs derived from the Nyquist curves was large in the HCEC processed samples.The finite element analysis indicated the independency of HCEC load from the length in comparison to the conventional CEC.HCEC is a unique SPD method,which can produce long ultrafine-grained rods with a combination of superior mechanical and corrosion properties.
基金This work was financially supported by the Iran National Science Foundation(No.96000854).
文摘Hydrostatic cyclic expansion extrusion(HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene(LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process,AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively.Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2009CB724304)National Key Technology R&D Program(Grant No.2011BAF09B05)National Natural Science Foundation of China(Grant No.50975157)
文摘Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.
基金Projects(51575010,51575009)supported by the National Natural Science Foundations of ChinaProject(Z1511000003150138)supported by Beijing Nova Program,China
文摘In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the influence of load-indcued errors on machining accuracy, an identification model of load-induced errors based on the deformation caused by applied load of hydrostatic turntable of computerized numerical control(CNC) gantry milling heavy machine is proposed. Based on multi-body system theory and screw theory, the space machining accuracy model of heavy duty machine tool is established with consideration of identified load-induced errors. And then, the influence of load-induced errors on space machining accuracy and the roundness error of a milled hole is analyzed. The analysis results show that load-induced errors have a big influence on the roundness error of machined hole, especially when the center of the milled hole is far from that of hydrostatic turntable.
基金supported by National Natural Science Foundation of China (Grant Nos. 51105005, 51275014)Ministry of Education of China (Grant No. 20111103120002)
文摘Hydrostatic spindles are increasingly used in precision machine tools. Thermal error is the key factor affecting the machining accuracy of the spindle, and research has focused on spindle thermal errors through examination of the influence of the temperature distribution, thermal deformation and spindle mode. However, seldom has any research investigated the thermal effects of the associated Couette flow. To study the heat transfer mechanism in spindle systems, the criterion of the heat transfer direction according to the temperature distribution of the Couette flow at different temperatures is deduced. The method is able to deal accurately with the significant phenomena occurring at every place where thermal energy flowed in such a spindle system. The variation of the motion error induced by thermal effects on a machine work-table during machining is predicated by establishing the thermo-mechanical error model of the hydrostatic spindle for a high precision machine tool. The flow state and thermal behavior of a hydrostatic spindle is analyzed with the evaluated heat power and the coefficients of the convective heat transfer over outer surface of the spindle are calculated, and the thermal influence on the oil film stiffness is evaluated. Thermal drift of the spindle nose is measured with an inductance micrometer, the thermal deformation data 1.35 μm after running for 4 h is consistent with the value predicted by the finite element analysis’s simulated result 1.28 μm, and this demonstrates that the simulation method is feasible. The thermal effects on the processing accuracy from the flow characteristics of the fluid inside the spindle are analyzed for the first time.
基金Supported by National Natural Science Foundation of China(Grant No.51275395)National Science and Technology Major Project of Ministry of Science and Technology of China(Grant No.2012ZX04002–091)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents,China(Grant No.2014RCJJ022)
文摘Hydrostatic guideways have various applications in precision machine tools due to their high motion accuracy. The analysis of motion straightness in hydrostatic guideways is generally ignoring the external load on the slider. A variation force also exists, caused by the different working positions, together with the dead load of the slider and that of other auxiliary devices. The effect of working position on vertical motion straightness is investigated based on the equivalent static model, considering the error averaging effort of pressured oil film in open hydrostatic guideways. Open hydrostatic guideways in LGF1000 are analyzed with this approach. The theoretical results show that the slider has maximum vertical motion straightness when the working position is closer the guiderail of Y axis. The vertical motion straightness reaches a minimum value as the working position is located at the center of the two guiderails on the Y axis. The difference between the maximum and minimum vertical motion straightness is 34.7%. The smaller vertical motion straightness is attributed to the smaller spacing of the two pads centers, along the Y direction. The experimental results show that the vertical motion straightness is 4.15 μm/1200 mm, when the working position is located in the middle of the Xbeam, and 5.08 pro/1200 mm, when the working position is approaching the Y guiderails, denoting an increase of 18.3%. The changing trends of the measured results validate the correctness of the theoretical model. The research work can be used to reveal the variation law of accuracy of the open hydrostatic guideways, under different working positions, to predict the machining precision, and provides the basis for an error compensation strategy for gantry type grinding machines.
文摘Response surface methodology (RSM) was employed in the present work and a second orderquadratic equation for high hydrostatic pressure (HHP) inactivation was built. Theadequacy of the model equation for predicting the optimum response values was verifiedeffectively by the validation data. Effects of temperature, pressure, and pressureholding time on HHP inactivation of Escherichia coli ATCC 8739 were explored. Byanalyzing the response surface plots and their corresponding contour plots as well assolving the quadratic equation, the optimum process parameters for inactivation E. coliof six log cycles were obtained as: temperature 32.2℃, pressure 346.4 MPa, and pressureholding time 12.6min.
文摘The effect of hydrostatic pressure on the vibration dispersion characteristics of fluid-shell coupled structures was studied.Both fluid-loaded cylindrical shells and fluid-filled cylindrical shells were considered.Numerical analysis was applied to solve the dispersion equations for shells filled with or loaded with fluid at various hydrostatic pressures.The results for external pressure showed that non-dimensional axial wave numbers are nearly independent when the pressure is below the critical level.The influence of internal pressure on wave numbers was found significant for the real branch s=1 and the complex branches of dispersion curves.The presence of internal pressure increased the cut on frequencies for the branch s=1 for high order wave modes.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)(No.72031326)the National Natural Science Foundation of China(No.52079091)+2 种基金supported by Academy of Finland under Grant No.322518supported by the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)The opening project number is KFJJ20-01M。
文摘The shear failure of rocks under both a static triaxial stress and a dynamic disturbance is common in deep underground engineering and it is therefore essential for the design of underground engineering to quantitively estimate the dynamic ModeⅡfracture toughness KⅡCof rocks under a triaxial stress state.However,the method for determining the dynamic KⅡCof rocks under a triaxial stress has not been developed yet.With an optimal sample preparation,the short core in compression(SCC)method was designed and verified in this study to measure the dynamic KⅡCof Fangshan marble(FM)subjected to different hydrostatic pressures through a triaxial dynamic testing system.The formula for calculating the dynamic KⅡCof the rock SCC specimen under hydrostatic pressures was obtained by using the finite element method in combination with secondary cracks.The experimental results indicate that the failure mode of the rock SCC specimen under a hydrostatic pressure is the shear fracture and the KⅡCof FM increases as the loading rate.In addition,at a given loading rate the dynamic rock KⅡCis barely affected by hydrostatic pressures.Another important observation is that the dynamic fracture energy of FM enhances with loading rates and hydrostatic pressures.
基金Supported by the National Natural Science Funds for Young Scholar of China(No.51005063)the Science and Technology Innovation People of Harbin(No.2013RFQXJ086)+1 种基金Heilongjiang Postdoctoral Foundation(No.LBH-Q12062)the National Natural Science Foundation of China(No.51075106)
文摘In order to improve the cutting stiffness,the paper studies the vertical hydrostatic bearing in the slide when a ram is in feed process.The change of the oil film thickness on hydrostatic guide rail and the curve of the oil film thickness in various cutting forces are calculated and a relation model through theoretical analysis method is derived.The pressure field of the guide rail recess is simulated based on the finite volume method and demonstrated through experiments.The study is of vital theoretical significance for the improvement of machining accuracy of numerical control machines and the entire computer numerical control(CNC) equipment and provides valuable theoretical basis for the design of hydrostatic guide rail in engineering practice.