The last decade has witnessed the emergence of hydrovoltaic technology,which can harvest electricity from different forms of water movement,such as raindrops,waves,flows,moisture,and natural evaporation.In particular,...The last decade has witnessed the emergence of hydrovoltaic technology,which can harvest electricity from different forms of water movement,such as raindrops,waves,flows,moisture,and natural evaporation.In particular,the evaporation-induced hydrovoltaic effect received great attention since its discovery in 2017 due to its negative heat emission property.Nevertheless,the influence of electrode reactions in evaporation-induced power generation is not negligible due to the chemical reaction between active metal electrodes and water,which leads to“exceptional”power generation.Herein,we designed a series of experiments based on air-laid paper devices with electrodes of different activities as the top and bottom electrodes.To verify the contribution of electrodes,we compared the output performance of different electrode combinations when the device was partially-wetted and fully-wetted.The device hydrophilicity,salt concentration,and acidity or basicity of solutions were also comprehensively investigated.It is demonstrated that the chemical reaction of active metals(Zn,Cu,Ag,etc.)with different aqueous solutions can generate considerable electrical energy and significantly distort the device performance,especially for Zn electrodes with an output voltage from~1.26 to~1.52 V and current from~1.24 to~75.69μA.To promote the long-term development of hydrovoltaic technology,we recommend use of inert electrodes in hydrovoltaic studies,such as Au and Pt,especially in water and moisture environment.展开更多
We fabricated wearable perspiration analyzing sites for actively monitoring physiological status during exercises without any batteries or other power supply.The device mainly consists of ZnO nanowire(NW)arrays and fl...We fabricated wearable perspiration analyzing sites for actively monitoring physiological status during exercises without any batteries or other power supply.The device mainly consists of ZnO nanowire(NW)arrays and flexible polydimethylsiloxane substrate.Sweat on the skin can flow into the flow channels of the device through capillary action and flow along the channels to ZnO NWs.The sweat flowing on the NWs(with lactate oxidase modification)can output a DC electrical signal,and the outputting voltage is dependent on the lactate concentration in the sweat as the biosensing signal.ZnO NWs generate electric double layer(EDL)in sweat,which causes a potential difference between the upper and lower ends(hydrovoltaic effect).The product of the enzymatic reaction can adjust the EDL and influence the output.This device can be integrated with wireless transmitter and may have potential application in constructing sports big data.This work promotes the development of next generation of biosensors and expands the scope of self-powered physiological monitoring system.展开更多
A new self-powered/self-cleaned atmosphere monitoring system has been fabricated from TiO_(2)nanoparticles through combining hydrovoltaic,gas sensing and photocatalytic effects.The TiO_(2)nanoparticle film can convert...A new self-powered/self-cleaned atmosphere monitoring system has been fabricated from TiO_(2)nanoparticles through combining hydrovoltaic,gas sensing and photocatalytic effects.The TiO_(2)nanoparticle film can convert natural thermal energy into electricity(hydrovoltaic effect)by the spontaneous water evaporation.The hydrovoltaic/gas-sensing coupling effect of TiO_(2)nanoparticle offers the waterevaporation-powered gas detection performance,and the outputting voltage/current has a good response to the surrounding gas atmosphere,directly acting as the gas sensing signal.The zeta potential of TiO_(2)is changed by the surface adsorption of gas molecules,and thus affects the electricity output of the system.The outputting electricity can directly power a wireless transmitter for transmitting the sensing information to external platform,and the whole system can work independently without electricity power supply.The rainwater can be used as the fuel of the system,and thus the system can be used outdoors without scheduled maintenance.Moreover,the photocatalytic activity of TiO_(2)can effectively degrade the organic pollutants on the film under photo illumination,leading to a self-clean behavior of the system.The system can probably promote the development of green sensing techniques with evaporation-induced ability.展开更多
Since its first discovery in 2017,evaporation-induced electricity has attracted extensive attention and shown significant advantages in green energy conversion.While the streaming potential-related electrokinetic effe...Since its first discovery in 2017,evaporation-induced electricity has attracted extensive attention and shown significant advantages in green energy conversion.While the streaming potential-related electrokinetic effect has been intensively explored and widely recognized as the underlying mechanism,the role of coupling between water molecules and charge carriers in the material remains elusive.Here we show through carefully designed experiments that the streaming potential effect indeed plays a role but can only contribute about half to the total water-evaporation-induced voltage occurring within the partially-wetted region of the carbon black film where the solid-liquid-gas three-phase interface exists.It is also shown that water evaporation from carboxyl and amino-functionalized carbon black films produces opposite voltage signals.Detailed first-principles calculations unveil that the adsorption of water molecules can lead to reversed charge transfer in the carboxyl and amino-functionalized carbon substrates.Finally,an evaporation-driven charge transport mechanism is proposed for the induced electricity mediated by the coupling between water molecules and charge carriers in the material.The results reveal the important role of direct interaction between water molecules and materials,deepening our understanding of the mechanism for evaporation-induced hydrovoltaic effect beyond streaming potential.展开更多
Water constitutes the largest energy carrier on earth,absorbing more than 70%of the solar energy received by the earth's surface,yet its low exploitation has been a constant concern.The hydrovoltaic effect is an e...Water constitutes the largest energy carrier on earth,absorbing more than 70%of the solar energy received by the earth's surface,yet its low exploitation has been a constant concern.The hydrovoltaic effect is an emerging technology that generates electricity through the direct interaction between nanomaterials and water of various forms(raindrops,waves,flows,moisture,and natural evaporation).Especially,the evaporation-driven hydrovoltaic effect is a spontaneous and ubiquitous process that can directly convert thermal energy from the surrounding environment into electricity without the demand for additional mechanical work,which shows unique advantages compared with other hydrovoltaic effects.A variety of nanostructured materials have been steadily developed for evaporation-driven hydrovoltaic devices(EHDs)in recent years.However,there has been a lack of a clear specification on the selection and design of materials for improving device performance.Herein,we first analyze the mechanisms of EHDs followed by a summarization of the recent advances in materials,including carbon materials,biomass-based materials,metal oxides,composite materials,and others.We then discuss the strategies for improving the energy conversion efficiency and the output power in terms of structural design,surface modification,and interface treatment.Finally,we provide an outlook on the potential applications of electricity generation,sensors,and desalination technology,as well as the challenges and prospects for the development of this emerging technology in the future.展开更多
基金supported by the National and Jiangsu Province NSF(Nos.T2293691 and BK20212008)of ChinaNational Key Research and Development Program of China(No.2019YFA0705400)+2 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(No.MCMS-I-0422K01)the Fundamental Research Funds for the Central Universities(No.NJ2022002)the Fund of Prospective Layout of Scientific Research for NUAA(Nanjing University of Aeronautics and Astronautics).
文摘The last decade has witnessed the emergence of hydrovoltaic technology,which can harvest electricity from different forms of water movement,such as raindrops,waves,flows,moisture,and natural evaporation.In particular,the evaporation-induced hydrovoltaic effect received great attention since its discovery in 2017 due to its negative heat emission property.Nevertheless,the influence of electrode reactions in evaporation-induced power generation is not negligible due to the chemical reaction between active metal electrodes and water,which leads to“exceptional”power generation.Herein,we designed a series of experiments based on air-laid paper devices with electrodes of different activities as the top and bottom electrodes.To verify the contribution of electrodes,we compared the output performance of different electrode combinations when the device was partially-wetted and fully-wetted.The device hydrophilicity,salt concentration,and acidity or basicity of solutions were also comprehensively investigated.It is demonstrated that the chemical reaction of active metals(Zn,Cu,Ag,etc.)with different aqueous solutions can generate considerable electrical energy and significantly distort the device performance,especially for Zn electrodes with an output voltage from~1.26 to~1.52 V and current from~1.24 to~75.69μA.To promote the long-term development of hydrovoltaic technology,we recommend use of inert electrodes in hydrovoltaic studies,such as Au and Pt,especially in water and moisture environment.
基金supported by the National Natural Science Foundation of China(11674048)Sichuan Science and Technology Program(20JCQN0201).
文摘We fabricated wearable perspiration analyzing sites for actively monitoring physiological status during exercises without any batteries or other power supply.The device mainly consists of ZnO nanowire(NW)arrays and flexible polydimethylsiloxane substrate.Sweat on the skin can flow into the flow channels of the device through capillary action and flow along the channels to ZnO NWs.The sweat flowing on the NWs(with lactate oxidase modification)can output a DC electrical signal,and the outputting voltage is dependent on the lactate concentration in the sweat as the biosensing signal.ZnO NWs generate electric double layer(EDL)in sweat,which causes a potential difference between the upper and lower ends(hydrovoltaic effect).The product of the enzymatic reaction can adjust the EDL and influence the output.This device can be integrated with wireless transmitter and may have potential application in constructing sports big data.This work promotes the development of next generation of biosensors and expands the scope of self-powered physiological monitoring system.
基金the National Natural Science Foundation of China(No.11674048)Sichuan Science and Technology Program(2020JDJQ0026)。
文摘A new self-powered/self-cleaned atmosphere monitoring system has been fabricated from TiO_(2)nanoparticles through combining hydrovoltaic,gas sensing and photocatalytic effects.The TiO_(2)nanoparticle film can convert natural thermal energy into electricity(hydrovoltaic effect)by the spontaneous water evaporation.The hydrovoltaic/gas-sensing coupling effect of TiO_(2)nanoparticle offers the waterevaporation-powered gas detection performance,and the outputting voltage/current has a good response to the surrounding gas atmosphere,directly acting as the gas sensing signal.The zeta potential of TiO_(2)is changed by the surface adsorption of gas molecules,and thus affects the electricity output of the system.The outputting electricity can directly power a wireless transmitter for transmitting the sensing information to external platform,and the whole system can work independently without electricity power supply.The rainwater can be used as the fuel of the system,and thus the system can be used outdoors without scheduled maintenance.Moreover,the photocatalytic activity of TiO_(2)can effectively degrade the organic pollutants on the film under photo illumination,leading to a self-clean behavior of the system.The system can probably promote the development of green sensing techniques with evaporation-induced ability.
基金the National and Jiangsu Province NSF(T2293691,BK20212008)of ChinaNational Key Research and Development Program of China(2019YFA0705400)+2 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(MCMS-I-0422K01)the Fundamental Research Funds for the Central Universities(NJ2022002)the Fund of Prospective Layout of Scientific Research for NUAA(Nanjing University of Aeronautics and Astronautics).
文摘Since its first discovery in 2017,evaporation-induced electricity has attracted extensive attention and shown significant advantages in green energy conversion.While the streaming potential-related electrokinetic effect has been intensively explored and widely recognized as the underlying mechanism,the role of coupling between water molecules and charge carriers in the material remains elusive.Here we show through carefully designed experiments that the streaming potential effect indeed plays a role but can only contribute about half to the total water-evaporation-induced voltage occurring within the partially-wetted region of the carbon black film where the solid-liquid-gas three-phase interface exists.It is also shown that water evaporation from carboxyl and amino-functionalized carbon black films produces opposite voltage signals.Detailed first-principles calculations unveil that the adsorption of water molecules can lead to reversed charge transfer in the carboxyl and amino-functionalized carbon substrates.Finally,an evaporation-driven charge transport mechanism is proposed for the induced electricity mediated by the coupling between water molecules and charge carriers in the material.The results reveal the important role of direct interaction between water molecules and materials,deepening our understanding of the mechanism for evaporation-induced hydrovoltaic effect beyond streaming potential.
基金National Key Research and Development Program of China,Grant/Award Number:2019YFA0705400The Fundamental Research Funds for the Central Universities,Grant/Award Number:NJ202202+1 种基金The Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures,Grant/Award Number:MCMS-I-0421K01Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20212008。
文摘Water constitutes the largest energy carrier on earth,absorbing more than 70%of the solar energy received by the earth's surface,yet its low exploitation has been a constant concern.The hydrovoltaic effect is an emerging technology that generates electricity through the direct interaction between nanomaterials and water of various forms(raindrops,waves,flows,moisture,and natural evaporation).Especially,the evaporation-driven hydrovoltaic effect is a spontaneous and ubiquitous process that can directly convert thermal energy from the surrounding environment into electricity without the demand for additional mechanical work,which shows unique advantages compared with other hydrovoltaic effects.A variety of nanostructured materials have been steadily developed for evaporation-driven hydrovoltaic devices(EHDs)in recent years.However,there has been a lack of a clear specification on the selection and design of materials for improving device performance.Herein,we first analyze the mechanisms of EHDs followed by a summarization of the recent advances in materials,including carbon materials,biomass-based materials,metal oxides,composite materials,and others.We then discuss the strategies for improving the energy conversion efficiency and the output power in terms of structural design,surface modification,and interface treatment.Finally,we provide an outlook on the potential applications of electricity generation,sensors,and desalination technology,as well as the challenges and prospects for the development of this emerging technology in the future.