Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and t...Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.展开更多
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_...Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.展开更多
Coupling the effects of flexoelectricity with piezoelectricity has been proved to effectively harvest mechanical energy.In this study,a composition-graded core–shell structure(HAP@FAP)was prepared by surface-gradient...Coupling the effects of flexoelectricity with piezoelectricity has been proved to effectively harvest mechanical energy.In this study,a composition-graded core–shell structure(HAP@FAP)was prepared by surface-gradient F-doping in hydroxyapatite,which could introduce flexoelectricity by a built-in strain gradient.A flexoelectric-boosted piezoelectric response was demonstrated by piezoresponse force microscopy(PFM)characterization,showing that the piezoelectric constant of HAP@FAP was increased by 2.25 times via a lattice strain gradient induced by chemical heterogeneities derived from the unique composition-graded core-shell structure.Thus,the piezocatalytic activity of HAP@FAP for phenanthrene(PHE)degradation in soil was enhanced.This work provides a new strategy for the modification of piezoelectric catalysts for the remediation of organics-contaminated soils on industrial land.展开更多
The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hyd...The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.展开更多
The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray...The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.展开更多
Stable and single dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell ...Stable and single dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel 7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G 1 phase of cell cycle,thus,cancer cells die directly.展开更多
Hot pressing of hydroxyapatite(HA) Ti system material and the stability of HA component were investigated to supply the foundation of optimizing sintering procedure of HA Ti functionally graded material(FGM). The resu...Hot pressing of hydroxyapatite(HA) Ti system material and the stability of HA component were investigated to supply the foundation of optimizing sintering procedure of HA Ti functionally graded material(FGM). The results show that the HA powders used have excellent thermal stability and no decomposition is observed at 1 300 ℃. The existence of Ti can promote the dehydration and decomposition of HA. However, no new compounds form between HA and Ti. By selecting sintering parameters properly, ideal HA Ti material can be acquired. The relative densities of the mixtures of HA and Ti are always lower than those of pure HA or Ti, which may be caused by the decomposition of HA in the mixtures.展开更多
Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[ Ca + Ce] (xco) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method...Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[ Ca + Ce] (xco) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with Xco below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g · mi^-1, however, the Ce- HAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when Xco was above 0.08, and the antibacterial ability gets better with the increase Of Xce, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.展开更多
Hydroxyapatite powder particles were plasma sprayed into water, their inner structures and phase compositions were studied by using scanning electron microscope(SEM) and X-ray diffractometer. The results show that the...Hydroxyapatite powder particles were plasma sprayed into water, their inner structures and phase compositions were studied by using scanning electron microscope(SEM) and X-ray diffractometer. The results show that the molten HA particles have a central hollow morphology and high crystallinity. The hollow morphology was caused by sublimated P2O5 and H2O, which will have an effect on surface morphology, cohesive and adhesive strength as well as dissolution and degradation of coating. The high crystallinity is attributed to lower cooling speed in water.展开更多
Nanoparticles of hydroxyapatite(HAP), strontium half substituted hydroxyapatite (SrCaHAP) and strontium totally substituted hydroxyapatite (SrHAP) were prepared by sol-gel-supercritical fluid drying (SCFD) met...Nanoparticles of hydroxyapatite(HAP), strontium half substituted hydroxyapatite (SrCaHAP) and strontium totally substituted hydroxyapatite (SrHAP) were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by element content analysis, FT-IR, XRD and TEM, and the effects of strontium substitution on crystal structure, crystallinity, particle shape and antibacterial properties of the nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results show that strontium can half and totally substitute for calcium and enter the structure of apatite according to the initial atomic ratios of Sr/[Sr+Ca] as 0.5, 1. The substitution decreases the IR wavenumbers of SrCaHAP and SrHAP, and changes the morphology of the nanoparticles from short rod shaped HAP to needle shaped SrCaHAP, and back to short rod shaped SrHAP. The crystallinity of HAP is higher than that of SrCaHAP, but is lower than that of SrHAP. Moreover, the antibacterial property of SrCaHAP and SrHAP are improved after the calcium is half and totally substituted by strontium.展开更多
Novel core-shell hydroxyapatite/chitosan biocomposite nanospheres were synthesized in a multiple emulsion. The multiple emulsion was a w/o/w emulsion, made of diammonium phosphate solution as an inner aqueous phase, c...Novel core-shell hydroxyapatite/chitosan biocomposite nanospheres were synthesized in a multiple emulsion. The multiple emulsion was a w/o/w emulsion, made of diammonium phosphate solution as an inner aqueous phase, cyclohexane as an oil phase, and calcium nitrate solution and chitosan solution as an outer aqueous. The forming mechanism of core-shell spheres and the influence of temperature on the morphology of the nanospheres were investigated. The diameter of the resulting core-shell nanospheres was 100-200 nm and the thickness of the chitosan shell was about 10 nm. And it concluded that at different reaction temperature the morphologies of the products would be changed. The core-shell nanospheres have potential applications for the development of new biomedical materials.展开更多
TiO2-hydroxyapatite (HA) nanostructured coatings were produced by atmospheric plasma spray method. The effects of starting powder composition and grain size on their mechanical properties were investigated. The micr...TiO2-hydroxyapatite (HA) nanostructured coatings were produced by atmospheric plasma spray method. The effects of starting powder composition and grain size on their mechanical properties were investigated. The microstructure and morphology were characterized by X-ray diffraction and scanning electron microscopy (SEM). It is found that the coating with 10% HA has the best mechanical properties. Based on Rietveld refinement method, the mean grain size of the as-received powder (212 nm) extensively decreases to 66.4 nm after 20 h of high-energy ball milling. In spite of grain growth, the deposited coatings maintain their nanostructures with the mean grain size of 112 nm. SEM images show that there is a lower porosity in the coating with a higher HA content. Optical microscopy images show that uniform thickness is obtained for all the coatings.展开更多
Fluorine-doped hydroxyapatite(FHA) and calcium deficient hydroxyapatite(CDHA) were coated on the surface biodegradable magnesium alloy using electrochemical deposition(ED) technique. Coating characterization was inves...Fluorine-doped hydroxyapatite(FHA) and calcium deficient hydroxyapatite(CDHA) were coated on the surface biodegradable magnesium alloy using electrochemical deposition(ED) technique. Coating characterization was investigated X-ray diffraction(XRD), Fourier-transformed infrared spectroscopy(FTIR), transmission electron microscopy(TEM), scanni electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS). The result shows that nano-FHA coated samp presents nano needle-like structure, which is oriented perpendicular to the surface of the substrate with denser and more unifo layers compared to the nano-CDHA coated sample. The nano-FHA coating shows smaller crystallite size(65 nm) compared to t nano-CDHA coating(95 nm); however, CDHA presents thicker layer(19 μm in thickness) compared to the nano-FHA(15 μm thickness). The corrosion behaviour determined by polarization, immersion and hydrogen evolution tests indicates that the nano-FH and nano-CDHA coatings significantly decrease corrosion rate and induce passivation. The nano-FHA and nano-CDHA coatings c accelerate the formation of bone-like apatite layer and significantly decrease the dissolution rate as compared to the uncoated M alloy. The nano-FHA coating provides effective protection to Mg alloy and presents the highest corrosion resistance. Therefore, t nano-FHA coating on Mg alloy is suggested as a great candidate for orthopaedic applications.展开更多
Hydroxyapatite (HA)-zirconium (ZrO2) composite coating was produced by magnetic sputtering on Ti6Al4V titanium alloy substrate, the coatings of 50HA-50ZrO2 and 75HA-25ZrO2 (mass fraction, %) were characterized b...Hydroxyapatite (HA)-zirconium (ZrO2) composite coating was produced by magnetic sputtering on Ti6Al4V titanium alloy substrate, the coatings of 50HA-50ZrO2 and 75HA-25ZrO2 (mass fraction, %) were characterized by scanning electron microscopy, energy disperse spectroscopy, X-ray diffraction and scratch test, respectively, and the effects of HA contents in the coating on residual stress were analyzed. The experimental results show that the phases of HA-ZrO2 composite coatings are HA, ZrO2 and Y2O3, and the HA has a certain decomposition in the combination process, producing TCP and CaO impurity phases. The porous surface of coating is conducive to the growth of bone tissue, and the surface roughness values of 50HA-50ZrO2 and 75HA-25ZrO2 are 1.61 μm and 2.92 μm, respectively. The coating interface is of mechanical integration, the bonding strength values of 50HA-50ZrO2 and 75HA-25ZrO2 are 30 N and 17.5 N, respectively, showing a downward trend with the HA contents increasing. The residual stress values in the coating of 50HA-50ZrO2 and 75HA-25ZrO2 are (-399.1±3.0) MPa, (-343.2±20.3) MPa, respectively, as a result, the appropriate increase of HA contents in the coating will reduce its residual stress.展开更多
Nanosized particles of hydroxyapatite (HAP) were synthesized by reacting Ca(H_2PO_4)_2·H_2O solution complex with equimolar Ca(OH)_2 saturated solution in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane w...Nanosized particles of hydroxyapatite (HAP) were synthesized by reacting Ca(H_2PO_4)_2·H_2O solution complex with equimolar Ca(OH)_2 saturated solution in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane water-in-oil microemulsion.The formation of microemulsion strongly depended on water content w (w=[H_2O]/[AOT] molar ratio) and concentration of surfactant and cosurfactant (1-octanol).By the variety of conductivity with w and the partial ternary phase diagram derived from a series of demarcation points,we set the basic component of microemulsions:[AOT]=0.1M(mol/dm^3),[1-octanol]=0.1M and w=3-9.Dynamic light scattering (DLS),UV-visible absorbance,TEM analysis and X-ray diffraction were used to characterize the microemulsion,formation of particles and resulting HAP particles.At low water content(w<9),the water pool radius of the droplet in the Ca(H_2PO_4)_2·H_2O microemulsion lineally depended on w.The size of final HAP particles was strongly affected by water content w and reactant concentration.With increasing water content w from 3 to 9,the size of HAP particles increased from 10-20nm to 40-50 nm at reactant concentration [Ca(H_2PO_4)2·H_2O]=12×10^(-3) mol/dm^3.The resulting HAP particles were poorly crystallized and spherical in morphology.展开更多
The hydroxyapatite ( HAp )/gelatin composite was prepared by self-assembly method. X-ray diffraction confirmed that the inorganic phase in the composite was HAp. The Fourier transform infra-red spectrum (FT-IR) i...The hydroxyapatite ( HAp )/gelatin composite was prepared by self-assembly method. X-ray diffraction confirmed that the inorganic phase in the composite was HAp. The Fourier transform infra-red spectrum (FT-IR) indicated the presence of amide and hydroxyl groups in the composite. The organic-inorganic ratio of the composite is similar to that of the human bone, which was determined by differential thermal analysis ( DTA ) and thermogravimetric analysis ( TGA ). Transmission Electron Microscopy (TEM) showed that the composite is composed by spindly grains and the rmdtilayer nanostructure can also be seen. Gelatin in the composite assembled orderly and orderly and directionally ; and the HAp crystals grew along the gelatin molecule at nearly the same direction. A model was established to explain the process of the interaction between gelatin and HAp.展开更多
The following article has been retracted due to the fact that it cannot be accepted by the author as a journal publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. Th...The following article has been retracted due to the fact that it cannot be accepted by the author as a journal publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. This paper published in Journal of Biosciences and Medicines Vol.2 No.2, April 2014, has been removed from this site.展开更多
The hybrid particles composed of hydroxyapatite (HAp) and ferrite ( γ-Fe203) were synthesized by two-step precipitation method. The effect of reaction temperature on the morphology of the hybrids was also studied...The hybrid particles composed of hydroxyapatite (HAp) and ferrite ( γ-Fe203) were synthesized by two-step precipitation method. The effect of reaction temperature on the morphology of the hybrids was also studied. The resultant hybrids were characterized by transmission electron microscopy (TEM) and X-ray diffraction analysis(XRD). It was found that γ-Fe203 nanoparticles dispersed within the HAp matrix and these hybrids had a feather-like or spherical morphology when synthesized at 90 ℃ or room temperature, respectively. The magnetic properties of the hybrid showed good superparamagnetic feature, and they could be controlled by the external magnetic field.展开更多
A systematic research was performed about diffusion kinetics of adsorbing F^- dissolved in water for carbonate hydroxyapatite (CHAP) from the natural hydroxyapatite which was modified by adulterating with CO3^2-. Th...A systematic research was performed about diffusion kinetics of adsorbing F^- dissolved in water for carbonate hydroxyapatite (CHAP) from the natural hydroxyapatite which was modified by adulterating with CO3^2-. The result shows that the speed of F^- adsorption is controlled by membrane diffusion when F^- concentration is relatively low, which is expressed by the kinetic equation of diffusion Q=0.0005(Ci-C)(t-ti)+0.3967, or by vacancy diffusion when F^- concentration is relatively high, which is expressed by the kinetic equation of diffusion In[C(o, t)]=8.4718-0.5048Int. Based on the feature of CHAP for adsorbing F^- dissolved in water and its special channel of the structure of CO3^3- modified hydroxyapatite, models of vacancy diffusion and membrane diffusion were established.展开更多
Development of suitable materials that acts as an interface between the implant and tissues in body system structurally, mechanically and bio functionally is important for the success of tissue engineering. This motiv...Development of suitable materials that acts as an interface between the implant and tissues in body system structurally, mechanically and bio functionally is important for the success of tissue engineering. This motivated materials scientists and biologists to find out suitable bioactive materials for the aforementioned purpose. There has been growing interest in developing bioactive synthetic ceramics that could closely mimic natural apatite characteristics. Hydroxyapatite (HAp) has been widely used as a biocompatible ceramic but mainly for contact with bone tissue, due to its resemblance to mineral bone. This study presents the synthesis and characterization of HAp materials from different sources like bovine bone and fish scales and their application in tissue engineering. The phase purity and crystallinity of different calcined HAp powder was determined by XRD and FTIR analysis. The Thermo Gravimetric and Differential Thermal Analysis were carried out to show the thermal stability of the HAp powder. The morphology of the powder was observed under Scanning Electron Microscopy (SEM). Cytotoxicity evaluation of the developed powder was carried out in RAW macrophage like cell line media for an incubation period of 72 hours. These results proved the biocompatibility of HAp powders obtained from different biosources for tissue engineering applications.展开更多
基金Funded by the National Natural Science Foundation of China(No.52172287)the National Key Research and Development Program of China(No.2021YFA0715700)。
文摘Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.
基金funded the World Class Research(WCR)Grant of Universitas Diponegoro with Contract Number 357-36/UN7.D2/PP/IV/2024.
文摘Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.
基金the financial support provided by the National Natural Science Foundation of China(51973148 and 21938006)the National Key Technology R&D Program(2020YFC1818401)+1 种基金Basic Research Project of Leading Technology in Jiangsu Province(BK20202012)project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Coupling the effects of flexoelectricity with piezoelectricity has been proved to effectively harvest mechanical energy.In this study,a composition-graded core–shell structure(HAP@FAP)was prepared by surface-gradient F-doping in hydroxyapatite,which could introduce flexoelectricity by a built-in strain gradient.A flexoelectric-boosted piezoelectric response was demonstrated by piezoresponse force microscopy(PFM)characterization,showing that the piezoelectric constant of HAP@FAP was increased by 2.25 times via a lattice strain gradient induced by chemical heterogeneities derived from the unique composition-graded core-shell structure.Thus,the piezocatalytic activity of HAP@FAP for phenanthrene(PHE)degradation in soil was enhanced.This work provides a new strategy for the modification of piezoelectric catalysts for the remediation of organics-contaminated soils on industrial land.
文摘The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.
基金Project (81071869) supported by the National Natural Science Foundation of China Project (2009637526) supported by China Scholarship Council (CSC Program)Project (2010QZZD006) supported by the Key Program of Central South University Advancing Front Foundation
文摘The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.
文摘Stable and single dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel 7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G 1 phase of cell cycle,thus,cancer cells die directly.
文摘Hot pressing of hydroxyapatite(HA) Ti system material and the stability of HA component were investigated to supply the foundation of optimizing sintering procedure of HA Ti functionally graded material(FGM). The results show that the HA powders used have excellent thermal stability and no decomposition is observed at 1 300 ℃. The existence of Ti can promote the dehydration and decomposition of HA. However, no new compounds form between HA and Ti. By selecting sintering parameters properly, ideal HA Ti material can be acquired. The relative densities of the mixtures of HA and Ti are always lower than those of pure HA or Ti, which may be caused by the decomposition of HA in the mixtures.
文摘Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[ Ca + Ce] (xco) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with Xco below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g · mi^-1, however, the Ce- HAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when Xco was above 0.08, and the antibacterial ability gets better with the increase Of Xce, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.
文摘Hydroxyapatite powder particles were plasma sprayed into water, their inner structures and phase compositions were studied by using scanning electron microscope(SEM) and X-ray diffractometer. The results show that the molten HA particles have a central hollow morphology and high crystallinity. The hollow morphology was caused by sublimated P2O5 and H2O, which will have an effect on surface morphology, cohesive and adhesive strength as well as dissolution and degradation of coating. The high crystallinity is attributed to lower cooling speed in water.
文摘Nanoparticles of hydroxyapatite(HAP), strontium half substituted hydroxyapatite (SrCaHAP) and strontium totally substituted hydroxyapatite (SrHAP) were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by element content analysis, FT-IR, XRD and TEM, and the effects of strontium substitution on crystal structure, crystallinity, particle shape and antibacterial properties of the nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results show that strontium can half and totally substitute for calcium and enter the structure of apatite according to the initial atomic ratios of Sr/[Sr+Ca] as 0.5, 1. The substitution decreases the IR wavenumbers of SrCaHAP and SrHAP, and changes the morphology of the nanoparticles from short rod shaped HAP to needle shaped SrCaHAP, and back to short rod shaped SrHAP. The crystallinity of HAP is higher than that of SrCaHAP, but is lower than that of SrHAP. Moreover, the antibacterial property of SrCaHAP and SrHAP are improved after the calcium is half and totally substituted by strontium.
基金Funded by the National Natural Science Foundation of China(No.50872099)
文摘Novel core-shell hydroxyapatite/chitosan biocomposite nanospheres were synthesized in a multiple emulsion. The multiple emulsion was a w/o/w emulsion, made of diammonium phosphate solution as an inner aqueous phase, cyclohexane as an oil phase, and calcium nitrate solution and chitosan solution as an outer aqueous. The forming mechanism of core-shell spheres and the influence of temperature on the morphology of the nanospheres were investigated. The diameter of the resulting core-shell nanospheres was 100-200 nm and the thickness of the chitosan shell was about 10 nm. And it concluded that at different reaction temperature the morphologies of the products would be changed. The core-shell nanospheres have potential applications for the development of new biomedical materials.
文摘TiO2-hydroxyapatite (HA) nanostructured coatings were produced by atmospheric plasma spray method. The effects of starting powder composition and grain size on their mechanical properties were investigated. The microstructure and morphology were characterized by X-ray diffraction and scanning electron microscopy (SEM). It is found that the coating with 10% HA has the best mechanical properties. Based on Rietveld refinement method, the mean grain size of the as-received powder (212 nm) extensively decreases to 66.4 nm after 20 h of high-energy ball milling. In spite of grain growth, the deposited coatings maintain their nanostructures with the mean grain size of 112 nm. SEM images show that there is a lower porosity in the coating with a higher HA content. Optical microscopy images show that uniform thickness is obtained for all the coatings.
文摘Fluorine-doped hydroxyapatite(FHA) and calcium deficient hydroxyapatite(CDHA) were coated on the surface biodegradable magnesium alloy using electrochemical deposition(ED) technique. Coating characterization was investigated X-ray diffraction(XRD), Fourier-transformed infrared spectroscopy(FTIR), transmission electron microscopy(TEM), scanni electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS). The result shows that nano-FHA coated samp presents nano needle-like structure, which is oriented perpendicular to the surface of the substrate with denser and more unifo layers compared to the nano-CDHA coated sample. The nano-FHA coating shows smaller crystallite size(65 nm) compared to t nano-CDHA coating(95 nm); however, CDHA presents thicker layer(19 μm in thickness) compared to the nano-FHA(15 μm thickness). The corrosion behaviour determined by polarization, immersion and hydrogen evolution tests indicates that the nano-FH and nano-CDHA coatings significantly decrease corrosion rate and induce passivation. The nano-FHA and nano-CDHA coatings c accelerate the formation of bone-like apatite layer and significantly decrease the dissolution rate as compared to the uncoated M alloy. The nano-FHA coating provides effective protection to Mg alloy and presents the highest corrosion resistance. Therefore, t nano-FHA coating on Mg alloy is suggested as a great candidate for orthopaedic applications.
基金Project (08KJB430002) supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, ChinaProject (CJ20110019) supported by the Applied Basic Research Programs of Changzhou City, China
文摘Hydroxyapatite (HA)-zirconium (ZrO2) composite coating was produced by magnetic sputtering on Ti6Al4V titanium alloy substrate, the coatings of 50HA-50ZrO2 and 75HA-25ZrO2 (mass fraction, %) were characterized by scanning electron microscopy, energy disperse spectroscopy, X-ray diffraction and scratch test, respectively, and the effects of HA contents in the coating on residual stress were analyzed. The experimental results show that the phases of HA-ZrO2 composite coatings are HA, ZrO2 and Y2O3, and the HA has a certain decomposition in the combination process, producing TCP and CaO impurity phases. The porous surface of coating is conducive to the growth of bone tissue, and the surface roughness values of 50HA-50ZrO2 and 75HA-25ZrO2 are 1.61 μm and 2.92 μm, respectively. The coating interface is of mechanical integration, the bonding strength values of 50HA-50ZrO2 and 75HA-25ZrO2 are 30 N and 17.5 N, respectively, showing a downward trend with the HA contents increasing. The residual stress values in the coating of 50HA-50ZrO2 and 75HA-25ZrO2 are (-399.1±3.0) MPa, (-343.2±20.3) MPa, respectively, as a result, the appropriate increase of HA contents in the coating will reduce its residual stress.
文摘Nanosized particles of hydroxyapatite (HAP) were synthesized by reacting Ca(H_2PO_4)_2·H_2O solution complex with equimolar Ca(OH)_2 saturated solution in sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane water-in-oil microemulsion.The formation of microemulsion strongly depended on water content w (w=[H_2O]/[AOT] molar ratio) and concentration of surfactant and cosurfactant (1-octanol).By the variety of conductivity with w and the partial ternary phase diagram derived from a series of demarcation points,we set the basic component of microemulsions:[AOT]=0.1M(mol/dm^3),[1-octanol]=0.1M and w=3-9.Dynamic light scattering (DLS),UV-visible absorbance,TEM analysis and X-ray diffraction were used to characterize the microemulsion,formation of particles and resulting HAP particles.At low water content(w<9),the water pool radius of the droplet in the Ca(H_2PO_4)_2·H_2O microemulsion lineally depended on w.The size of final HAP particles was strongly affected by water content w and reactant concentration.With increasing water content w from 3 to 9,the size of HAP particles increased from 10-20nm to 40-50 nm at reactant concentration [Ca(H_2PO_4)2·H_2O]=12×10^(-3) mol/dm^3.The resulting HAP particles were poorly crystallized and spherical in morphology.
文摘The hydroxyapatite ( HAp )/gelatin composite was prepared by self-assembly method. X-ray diffraction confirmed that the inorganic phase in the composite was HAp. The Fourier transform infra-red spectrum (FT-IR) indicated the presence of amide and hydroxyl groups in the composite. The organic-inorganic ratio of the composite is similar to that of the human bone, which was determined by differential thermal analysis ( DTA ) and thermogravimetric analysis ( TGA ). Transmission Electron Microscopy (TEM) showed that the composite is composed by spindly grains and the rmdtilayer nanostructure can also be seen. Gelatin in the composite assembled orderly and orderly and directionally ; and the HAp crystals grew along the gelatin molecule at nearly the same direction. A model was established to explain the process of the interaction between gelatin and HAp.
文摘The following article has been retracted due to the fact that it cannot be accepted by the author as a journal publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. This paper published in Journal of Biosciences and Medicines Vol.2 No.2, April 2014, has been removed from this site.
基金Funded by the Project of Shandong Province Higher Educational Science and Technology Program(No.J09LC13)the Promotive Research Fund for Excellent Young and Middle-Aged Scientists of the Shandong Province(No.BS2010CL018)
文摘The hybrid particles composed of hydroxyapatite (HAp) and ferrite ( γ-Fe203) were synthesized by two-step precipitation method. The effect of reaction temperature on the morphology of the hybrids was also studied. The resultant hybrids were characterized by transmission electron microscopy (TEM) and X-ray diffraction analysis(XRD). It was found that γ-Fe203 nanoparticles dispersed within the HAp matrix and these hybrids had a feather-like or spherical morphology when synthesized at 90 ℃ or room temperature, respectively. The magnetic properties of the hybrid showed good superparamagnetic feature, and they could be controlled by the external magnetic field.
基金the key scientific foundation(No.2001Z20004)the Hubei Provincial Department of Education and the natural science foundation(2005ABA024)
文摘A systematic research was performed about diffusion kinetics of adsorbing F^- dissolved in water for carbonate hydroxyapatite (CHAP) from the natural hydroxyapatite which was modified by adulterating with CO3^2-. The result shows that the speed of F^- adsorption is controlled by membrane diffusion when F^- concentration is relatively low, which is expressed by the kinetic equation of diffusion Q=0.0005(Ci-C)(t-ti)+0.3967, or by vacancy diffusion when F^- concentration is relatively high, which is expressed by the kinetic equation of diffusion In[C(o, t)]=8.4718-0.5048Int. Based on the feature of CHAP for adsorbing F^- dissolved in water and its special channel of the structure of CO3^3- modified hydroxyapatite, models of vacancy diffusion and membrane diffusion were established.
文摘Development of suitable materials that acts as an interface between the implant and tissues in body system structurally, mechanically and bio functionally is important for the success of tissue engineering. This motivated materials scientists and biologists to find out suitable bioactive materials for the aforementioned purpose. There has been growing interest in developing bioactive synthetic ceramics that could closely mimic natural apatite characteristics. Hydroxyapatite (HAp) has been widely used as a biocompatible ceramic but mainly for contact with bone tissue, due to its resemblance to mineral bone. This study presents the synthesis and characterization of HAp materials from different sources like bovine bone and fish scales and their application in tissue engineering. The phase purity and crystallinity of different calcined HAp powder was determined by XRD and FTIR analysis. The Thermo Gravimetric and Differential Thermal Analysis were carried out to show the thermal stability of the HAp powder. The morphology of the powder was observed under Scanning Electron Microscopy (SEM). Cytotoxicity evaluation of the developed powder was carried out in RAW macrophage like cell line media for an incubation period of 72 hours. These results proved the biocompatibility of HAp powders obtained from different biosources for tissue engineering applications.