A porous cerium-containing hydroxyapatite coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in an electrolytic solution containing calcium acetate, p-glycerol phosphate disodium salt pe...A porous cerium-containing hydroxyapatite coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in an electrolytic solution containing calcium acetate, p-glycerol phosphate disodium salt pentahydrate (β-GP), and cerium nitrate. The thickness, phase, composition morphology, and biocompatibility of the oxide coating were characterized by X-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), and cell culture. The thickness of the MAO film is about 15-25 ~tm, and the coating is porous and uneven, without any apparent interface to the titanium substrates. The results of XRD and EDS show that the porous coating is made up of hydroxyapatite (HA) film containing Ce. The favorable osteoblast cell affinity makes the Ce-HA film have a good biocompatibility. The Ce-HA film is expected to have significant medical applications as dental implants and artificial bone joints.展开更多
The hydroxyapatite(HA) ceramic coating was successfully prepared on Ti6A14V alloy by the hydrothermal-electrochemical deposition method with constant voltage model. The phases of deposits were analyzed by X-ray diff...The hydroxyapatite(HA) ceramic coating was successfully prepared on Ti6A14V alloy by the hydrothermal-electrochemical deposition method with constant voltage model. The phases of deposits were analyzed by X-ray diffraction. The releationship between crystallinity and depositing temperature was discussed. The microstructures of hydroxyapatite coating were observed by scanning electron microscope. The experimental results showed that the phases, crystaUinity and morphologies of deposits were influenced by depositing temperature (100℃, 120℃, 140℃, 160℃, 180℃ and 200℃, respectively). The special hydrothermal environment can lower the crystallization temperature of HA. The crystallinity of HA increases firstly and then decreases with the increase of temperature. There is little hydroxyapatite deposited on the Ti6A14V surface when the depositing temperature is 100℃. The HA deposition increases with the increase of the depositing temperature. And the HA morphologies are influenced by the depositing temperature.展开更多
Hydroxyapatite coatings were directly prepared on anodized titanium by electro-deposition method in a modified simulated body fluid.The configuration,structure and bioactivity of the coating were investigated with sca...Hydroxyapatite coatings were directly prepared on anodized titanium by electro-deposition method in a modified simulated body fluid.The configuration,structure and bioactivity of the coating were investigated with scanning electron microscopy(SEM),X-ray diffraction analyzer(XRD)and Fourier transform infrared spectros-copy(FTIR)techniques.The results demonstrated that pure and homogeneous hydroxyapatite coating can be obtained without any post-treatment.The prepared coating showed good bioactivity in simulated body fluid(SBF).The time required for a fully covered dense hydroxyapatite coatings was 4 days immersion in SBF.展开更多
TiO2-hydroxyapatite (HA) nanostructured coatings were produced by atmospheric plasma spray method. The effects of starting powder composition and grain size on their mechanical properties were investigated. The micr...TiO2-hydroxyapatite (HA) nanostructured coatings were produced by atmospheric plasma spray method. The effects of starting powder composition and grain size on their mechanical properties were investigated. The microstructure and morphology were characterized by X-ray diffraction and scanning electron microscopy (SEM). It is found that the coating with 10% HA has the best mechanical properties. Based on Rietveld refinement method, the mean grain size of the as-received powder (212 nm) extensively decreases to 66.4 nm after 20 h of high-energy ball milling. In spite of grain growth, the deposited coatings maintain their nanostructures with the mean grain size of 112 nm. SEM images show that there is a lower porosity in the coating with a higher HA content. Optical microscopy images show that uniform thickness is obtained for all the coatings.展开更多
To improve the bioactivity and corrosion resistance of AZ91 D magnesium alloy,hydroxyapatite(HAp) coatings with novel microstructured morphologies were prepared successfully on AZ91 D substrates via a facile hydroth...To improve the bioactivity and corrosion resistance of AZ91 D magnesium alloy,hydroxyapatite(HAp) coatings with novel microstructured morphologies were prepared successfully on AZ91 D substrates via a facile hydrothermal method.Different chelating agents including polyaspartic acid(PASP) and ethylenediaminetetraacetic acid(EDTA) were introduced to investigate their effects on the morphology and corrosion resistance of the coated magnesium alloys.The results revealed that the coating prepared with PASP was composed of many uniform urchin-like microspheres,while the coating prepared with EDTA consisted of many flower-like particles.Moreover,the crystallinity of the coating prepared with EDTA was much higher than that of the coating prepared with PASP.Electrochemical tests revealed that the corrosion resistance of the substrate was significantly improved after being coated with each coating.Immersion test of the coated samples in simulated body fluid(SBF) demonstrated that the coatings could be biodegraded gradually and induce the formation of calcium phosphate particles.展开更多
Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained co...Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained coatings was investigated.The effect of heat treatment on as-sprayed coating in terms of the crystallinity and microstructure was also studied.The phase composition of coatings was analyzed by X-ray diffraction(XRD)and FTIR.The surface and cross-section morphologies and microstructure of coatings as well as the morphology of feedstock were evaluated using scanning electron microscope(SEM).The crystallization temperature of amorphous HA phase in as-sprayed coating was examined by using differential thermal analysis(DTA). The results suggest that phase composition and microstructure of as-sprayed HA coatings strongly depend on the spraying parameters,and heat treatment at 760 ℃for 2 h is one of effective means for increasing the crystallinity and improvement in microstructure of as-sprayed HA coatings.展开更多
Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-c...Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.展开更多
Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period...Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period.In this context,magnesium(Mg)plays a major role in the production of biodegradable implants owing to their characteristic degradation nature under the influence of body fluids.Also,Mg is one of the essential nutrients required to perform various metabolic activities by the human cells,and therefore,the degraded Mg products will be readily absorbed by the nearby tissues.Nevertheless,the higher corrosion rate in the biological environment is the primary downside of using Mg implants that liberate H2gas resulting in the formation of cavities.Further,in certain cases,Mg undergoes complete degradation before the healing of damaged bone tissue and cannot serve the purpose of providing mechanical support.So,many studies have been focused on the development of different strategies to improve the corrosion-resistant behavior of Mg according to the requirement.In this regard,the present review focused on the limitations of using pure Mg and Mg alloys for the fabrication of medical implants and how the calcium phosphate conversion coating alters the corrosive tendency through the formation of hydroxyapatite protective films for enhanced performance in medical implant applications.展开更多
Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their suscep...Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.展开更多
A new method of preparation of biomaterial composite coating by the techniqueof subsonic thermal spraying was discussed in this paper. Ti_6Al_4V and pure Ti were chosen assubstrate and sublayer material respectively a...A new method of preparation of biomaterial composite coating by the techniqueof subsonic thermal spraying was discussed in this paper. Ti_6Al_4V and pure Ti were chosen assubstrate and sublayer material respectively and the working layer was sprayed with biomaterialhydroxyapatite (HAP), forming the composite coating. The experiments of heat shock and tensilestrength showed that the bonding strength between coating and substrate is almost as same as that ofspecimen in which Ni/Al powder was adopted as sublayer. The phases of TiN, TiO_2, and Ti_2O_3 wereformed in the sublayer, which are free of toxic and have no side effects. The powder of workinglayer HAP was decomposed partly during spraying, but it can be solved by later treatment.展开更多
Magnesium is a candidate metal for biodegradable implant applications for its biodegradation tendency and excellent biocompatibility.Unfortunately,the high degradation rate of magnesium and also its localized degradat...Magnesium is a candidate metal for biodegradable implant applications for its biodegradation tendency and excellent biocompatibility.Unfortunately,the high degradation rate of magnesium and also its localized degradation in physiological conditions are the main issues for its successful implant applications.The degradation rate of magnesium has been reduced to some degree via alloying,but the localized degradation susceptibility is a great concern.For many years,hydroxyapatite(HAp),a biocompatible ceramic material,has been extensively used for bio-implant applications.Recently,a substantial amount of research has been carried out on coating HAp on magnesium-based materials for improved degradation resistance in particular and also to enhance the biocompatibility.This review article focuses on the different methods of HAp coating on magnesium-based materials and also the recent cutting-edge advancements made in the coating process for improved degradation resistance and biocompatibility.The mechanical stability of the HAp coated magnesium-based materials is also discussed.展开更多
A two-step electrodeposition method was developed to prepare hydroxyapatite/metal composite coatings. Hydroxyapatite coatings were fabricated by electrochemical deposition and post-treatment with alkaline solution, an...A two-step electrodeposition method was developed to prepare hydroxyapatite/metal composite coatings. Hydroxyapatite coatings were fabricated by electrochemical deposition and post-treatment with alkaline solution, and then cobalt was electrodeposited to form hydroxyapatite/cobalt composite coatings to improve its mechanical properties of bonding strength.展开更多
Nano-particle hydroxyapatite ( HA ) was prepared with a novel ultrasonic precipitation process and the as-prepared nanopowder was used to produce hydroxyapatite ( HA ) coatings on titanium substrate via plasma spr...Nano-particle hydroxyapatite ( HA ) was prepared with a novel ultrasonic precipitation process and the as-prepared nanopowder was used to produce hydroxyapatite ( HA ) coatings on titanium substrate via plasma spraying. The phase and the microstructare of the coating were characterized by X- ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that spherical particles could be prepared by ultrasonic precipitation process; and a corresponding dense HA coating with molten surface and low-porosity cross-section structure was acquired. During the plasma spraying process, new phases of Ca3 ( PO4 )2 and Ca2 P2O7 were generated. After heat-treating at 800℃ for 1 h, the contents of Ca3 ( PO4 )2 and Ca2 P2O7 decreased while HA content increased. Tensile adhesion tests showed that the plasma sprayed coating prepared with the spherical nanoparticles exhibited high tensile bond strength.展开更多
Hydroxyapatite (HA) coatings on pyrolytic carbon were produced via electrophoretic deposition (EPD) using glycol and ethanol as dispersion medium respectively. The effect of the solubility of HA in the dispersion ...Hydroxyapatite (HA) coatings on pyrolytic carbon were produced via electrophoretic deposition (EPD) using glycol and ethanol as dispersion medium respectively. The effect of the solubility of HA in the dispersion medium on crack occurrence and adherence of the coating was investigated by means of scanning electronic microscope (SEM) and atomic absorption spectrometer (AAS). The results show that the solubility of HA in glycol is higher than that in ethanol. The usage of glycol as a dispersion medium can reduce the possibility of crack formation and enhance the adhesive strength between the coating and the carbon substrate. The green coatings can be sintered under vacuum at 1 000 ℃ whether the coatings are obtained using ethanol or glycol as dispersion medium. No HA decomposition was observed up to 1 000 ℃ by vacuum sintering by X-ray diffraction (XRD) analysis.展开更多
Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material f...Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.展开更多
In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, ...In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, film and protective film structure, etc. As a result of sol gel process continuously broaden the application field, this method has been more and more get the favor of people. Compared with other traditional preparation methods of inorganic material, sol-gel process has many characteristics. To adjust the solution acidity and add a small amount of acid or alkali can have the effect of" catalyst, its reaction process on sol to get and gel structure may also be affected. Our research analyze the topic theoretically and numerically which is meaningful.展开更多
A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic ...A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic Al2O3 layer with micrometric pore diameter was formed by anodization of the PVD-deposited aluminum film on titanium and subsequent removal of part barrier Al2O3 layer. Hydroxyapatite coating was then electrodeposited onto the as-synthesized anodic Al2O3 on titanium. A hydrothermal process was finally applied to the fabricated biocomposite coating on titanium in alkaline medium. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffractometry(XRD) were employed to investigate the morphologies and compositions of the pre-and post-hydrothermally treated hydroxyapatite/Al2O3 biocomposite coatings. The results show that micrometric plate-like Ca-deficient hydroxyapatite (CDHA) coatings are directly electrodeposited onto anodic Al2O3 at constant current densities ranging from 1.2 to 2.0 mA/cm2 using NaH2PO4 as the phosphorous source. After hydrothermal treatment, the micrometric plate-like CDHA coating electrodeposited at 2.0 mA/cm2 is converted into nano-network Ca-rich hydroxyapatite (CRHA) one and the adhesion strength is improved from 9.5 MPa to 21.3 MPa. A mechanism of dissolution-recrystallization was also proposed for the formation of CRHA.展开更多
In order to improve the quality of the bio-active coating on medical grade CoNiCrMo substrate, hydroxyapatite(HA) coatings were produced via low-temperature dip-coating route on substrates treated using various surfac...In order to improve the quality of the bio-active coating on medical grade CoNiCrMo substrate, hydroxyapatite(HA) coatings were produced via low-temperature dip-coating route on substrates treated using various surface pre-treating methods. The surface and cross-sectional morphologies of HA coatings were observed by SEM, as well as the bonding strength between coatings and substrates after different pre-treatments were characterized according to ASTM C633. The low-temperature HA dip-coating method with the substrate merely oxidized at 600℃ can provide a high quality HA coating for CoNiCrMo, of which the bonding strength reaches (58±5)MPa, higher than that of the clinically used HA coatings on Ti-alloys produced via plasma spray route, as well as a HA coating with full crystallinity and high phase-purity, which is more in-vivo stable than plasma sprayed HA coating.展开更多
Silicon-substituted hydroxyapatite (Ca10(PO4)6-x(SiO4)x(OH)2-x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by electrophoretic deposition technique with the addition of triethanolamine (T...Silicon-substituted hydroxyapatite (Ca10(PO4)6-x(SiO4)x(OH)2-x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by electrophoretic deposition technique with the addition of triethanolamine (TEA) to enhance the ionization degree of Si-HA suspension. The surface structure was characterized by XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated. The results show that the depositing thickness and the images of Si-HA coating can be changed with the variation of deposition time. The XRD spectra of Ti/Si-HA coatings show the characteristic diffraction peaks of HA, and the incorporation of silicon changes the lattice parameter of the crystal. The FTIR spectra shows that the most notable effect of silicon substitution is the decrease of intensities of —OH and PO43- groups with the silicon contents increasing. XRD and EDS element analyses present that the content of silicon in the coating increases with increasing silicon concentration in the suspension. The bioactive TiO2 coating formed may improve the bond strength of the coatings. The interaction of Ti/Si-HA coating with BSA is much greater than that of Ti/HA coating, suggesting that the incorporation of silicon in HA is significant to improve the bioactive performance of HA.展开更多
AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON an...AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability.展开更多
基金This work was financially supported by the Natural Science Foundation Team Project of Guangdong,China(No.04205786)the Key Science and Technology Project of the Ministry of Education of China(No.[2005]4).
文摘A porous cerium-containing hydroxyapatite coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in an electrolytic solution containing calcium acetate, p-glycerol phosphate disodium salt pentahydrate (β-GP), and cerium nitrate. The thickness, phase, composition morphology, and biocompatibility of the oxide coating were characterized by X-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), and cell culture. The thickness of the MAO film is about 15-25 ~tm, and the coating is porous and uneven, without any apparent interface to the titanium substrates. The results of XRD and EDS show that the porous coating is made up of hydroxyapatite (HA) film containing Ce. The favorable osteoblast cell affinity makes the Ce-HA film have a good biocompatibility. The Ce-HA film is expected to have significant medical applications as dental implants and artificial bone joints.
基金Funded in Part by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2013-KF7)the Research Fund of Science and Technology Commission of Shanghai Municipality(Nos.09ZR1422100,11441900500,11441900501)
文摘The hydroxyapatite(HA) ceramic coating was successfully prepared on Ti6A14V alloy by the hydrothermal-electrochemical deposition method with constant voltage model. The phases of deposits were analyzed by X-ray diffraction. The releationship between crystallinity and depositing temperature was discussed. The microstructures of hydroxyapatite coating were observed by scanning electron microscope. The experimental results showed that the phases, crystaUinity and morphologies of deposits were influenced by depositing temperature (100℃, 120℃, 140℃, 160℃, 180℃ and 200℃, respectively). The special hydrothermal environment can lower the crystallization temperature of HA. The crystallinity of HA increases firstly and then decreases with the increase of temperature. There is little hydroxyapatite deposited on the Ti6A14V surface when the depositing temperature is 100℃. The HA deposition increases with the increase of the depositing temperature. And the HA morphologies are influenced by the depositing temperature.
基金Supported by the Young Scholars Fund of Beijing University of Chemical Technology(QN0713)
文摘Hydroxyapatite coatings were directly prepared on anodized titanium by electro-deposition method in a modified simulated body fluid.The configuration,structure and bioactivity of the coating were investigated with scanning electron microscopy(SEM),X-ray diffraction analyzer(XRD)and Fourier transform infrared spectros-copy(FTIR)techniques.The results demonstrated that pure and homogeneous hydroxyapatite coating can be obtained without any post-treatment.The prepared coating showed good bioactivity in simulated body fluid(SBF).The time required for a fully covered dense hydroxyapatite coatings was 4 days immersion in SBF.
文摘TiO2-hydroxyapatite (HA) nanostructured coatings were produced by atmospheric plasma spray method. The effects of starting powder composition and grain size on their mechanical properties were investigated. The microstructure and morphology were characterized by X-ray diffraction and scanning electron microscopy (SEM). It is found that the coating with 10% HA has the best mechanical properties. Based on Rietveld refinement method, the mean grain size of the as-received powder (212 nm) extensively decreases to 66.4 nm after 20 h of high-energy ball milling. In spite of grain growth, the deposited coatings maintain their nanostructures with the mean grain size of 112 nm. SEM images show that there is a lower porosity in the coating with a higher HA content. Optical microscopy images show that uniform thickness is obtained for all the coatings.
基金Funded by Shandong Provincial Natural Science Foundation,China(No.ZR2014EMM019)
文摘To improve the bioactivity and corrosion resistance of AZ91 D magnesium alloy,hydroxyapatite(HAp) coatings with novel microstructured morphologies were prepared successfully on AZ91 D substrates via a facile hydrothermal method.Different chelating agents including polyaspartic acid(PASP) and ethylenediaminetetraacetic acid(EDTA) were introduced to investigate their effects on the morphology and corrosion resistance of the coated magnesium alloys.The results revealed that the coating prepared with PASP was composed of many uniform urchin-like microspheres,while the coating prepared with EDTA consisted of many flower-like particles.Moreover,the crystallinity of the coating prepared with EDTA was much higher than that of the coating prepared with PASP.Electrochemical tests revealed that the corrosion resistance of the substrate was significantly improved after being coated with each coating.Immersion test of the coated samples in simulated body fluid(SBF) demonstrated that the coatings could be biodegraded gradually and induce the formation of calcium phosphate particles.
文摘Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained coatings was investigated.The effect of heat treatment on as-sprayed coating in terms of the crystallinity and microstructure was also studied.The phase composition of coatings was analyzed by X-ray diffraction(XRD)and FTIR.The surface and cross-section morphologies and microstructure of coatings as well as the morphology of feedstock were evaluated using scanning electron microscope(SEM).The crystallization temperature of amorphous HA phase in as-sprayed coating was examined by using differential thermal analysis(DTA). The results suggest that phase composition and microstructure of as-sprayed HA coatings strongly depend on the spraying parameters,and heat treatment at 760 ℃for 2 h is one of effective means for increasing the crystallinity and improvement in microstructure of as-sprayed HA coatings.
文摘Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.
文摘Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period.In this context,magnesium(Mg)plays a major role in the production of biodegradable implants owing to their characteristic degradation nature under the influence of body fluids.Also,Mg is one of the essential nutrients required to perform various metabolic activities by the human cells,and therefore,the degraded Mg products will be readily absorbed by the nearby tissues.Nevertheless,the higher corrosion rate in the biological environment is the primary downside of using Mg implants that liberate H2gas resulting in the formation of cavities.Further,in certain cases,Mg undergoes complete degradation before the healing of damaged bone tissue and cannot serve the purpose of providing mechanical support.So,many studies have been focused on the development of different strategies to improve the corrosion-resistant behavior of Mg according to the requirement.In this regard,the present review focused on the limitations of using pure Mg and Mg alloys for the fabrication of medical implants and how the calcium phosphate conversion coating alters the corrosive tendency through the formation of hydroxyapatite protective films for enhanced performance in medical implant applications.
文摘Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.
基金This project is financially supported by the Natural Science Foundation ofHeilongjiang Province (No. E0232)
文摘A new method of preparation of biomaterial composite coating by the techniqueof subsonic thermal spraying was discussed in this paper. Ti_6Al_4V and pure Ti were chosen assubstrate and sublayer material respectively and the working layer was sprayed with biomaterialhydroxyapatite (HAP), forming the composite coating. The experiments of heat shock and tensilestrength showed that the bonding strength between coating and substrate is almost as same as that ofspecimen in which Ni/Al powder was adopted as sublayer. The phases of TiN, TiO_2, and Ti_2O_3 wereformed in the sublayer, which are free of toxic and have no side effects. The powder of workinglayer HAP was decomposed partly during spraying, but it can be solved by later treatment.
基金National Natural Science Foundation of China(Grant No.52071191)Open Foundation of Hubei Key Laboratory of Advanced Technology for Automotive Components(No.XDQCKF2021006)。
文摘Magnesium is a candidate metal for biodegradable implant applications for its biodegradation tendency and excellent biocompatibility.Unfortunately,the high degradation rate of magnesium and also its localized degradation in physiological conditions are the main issues for its successful implant applications.The degradation rate of magnesium has been reduced to some degree via alloying,but the localized degradation susceptibility is a great concern.For many years,hydroxyapatite(HAp),a biocompatible ceramic material,has been extensively used for bio-implant applications.Recently,a substantial amount of research has been carried out on coating HAp on magnesium-based materials for improved degradation resistance in particular and also to enhance the biocompatibility.This review article focuses on the different methods of HAp coating on magnesium-based materials and also the recent cutting-edge advancements made in the coating process for improved degradation resistance and biocompatibility.The mechanical stability of the HAp coated magnesium-based materials is also discussed.
文摘A two-step electrodeposition method was developed to prepare hydroxyapatite/metal composite coatings. Hydroxyapatite coatings were fabricated by electrochemical deposition and post-treatment with alkaline solution, and then cobalt was electrodeposited to form hydroxyapatite/cobalt composite coatings to improve its mechanical properties of bonding strength.
文摘Nano-particle hydroxyapatite ( HA ) was prepared with a novel ultrasonic precipitation process and the as-prepared nanopowder was used to produce hydroxyapatite ( HA ) coatings on titanium substrate via plasma spraying. The phase and the microstructare of the coating were characterized by X- ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that spherical particles could be prepared by ultrasonic precipitation process; and a corresponding dense HA coating with molten surface and low-porosity cross-section structure was acquired. During the plasma spraying process, new phases of Ca3 ( PO4 )2 and Ca2 P2O7 were generated. After heat-treating at 800℃ for 1 h, the contents of Ca3 ( PO4 )2 and Ca2 P2O7 decreased while HA content increased. Tensile adhesion tests showed that the plasma sprayed coating prepared with the spherical nanoparticles exhibited high tensile bond strength.
基金Funded by the Hubei Natural Science Foundation(No.2004ABA113)
文摘Hydroxyapatite (HA) coatings on pyrolytic carbon were produced via electrophoretic deposition (EPD) using glycol and ethanol as dispersion medium respectively. The effect of the solubility of HA in the dispersion medium on crack occurrence and adherence of the coating was investigated by means of scanning electronic microscope (SEM) and atomic absorption spectrometer (AAS). The results show that the solubility of HA in glycol is higher than that in ethanol. The usage of glycol as a dispersion medium can reduce the possibility of crack formation and enhance the adhesive strength between the coating and the carbon substrate. The green coatings can be sintered under vacuum at 1 000 ℃ whether the coatings are obtained using ethanol or glycol as dispersion medium. No HA decomposition was observed up to 1 000 ℃ by vacuum sintering by X-ray diffraction (XRD) analysis.
基金supported by the Henan College Students Innovation and Entrepreneurship Training Program(202211070009 and 202211070016).
文摘Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.
文摘In this paper, we conduct research on the high-strength coating preparation methodology based on acid catalytic and Sol-Gel method. This method has been widely used in the preparation of various functional thin film, film and protective film structure, etc. As a result of sol gel process continuously broaden the application field, this method has been more and more get the favor of people. Compared with other traditional preparation methods of inorganic material, sol-gel process has many characteristics. To adjust the solution acidity and add a small amount of acid or alkali can have the effect of" catalyst, its reaction process on sol to get and gel structure may also be affected. Our research analyze the topic theoretically and numerically which is meaningful.
基金Project(50472031) supported by the National Natural Science Foundation of China
文摘A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic Al2O3 layer with micrometric pore diameter was formed by anodization of the PVD-deposited aluminum film on titanium and subsequent removal of part barrier Al2O3 layer. Hydroxyapatite coating was then electrodeposited onto the as-synthesized anodic Al2O3 on titanium. A hydrothermal process was finally applied to the fabricated biocomposite coating on titanium in alkaline medium. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffractometry(XRD) were employed to investigate the morphologies and compositions of the pre-and post-hydrothermally treated hydroxyapatite/Al2O3 biocomposite coatings. The results show that micrometric plate-like Ca-deficient hydroxyapatite (CDHA) coatings are directly electrodeposited onto anodic Al2O3 at constant current densities ranging from 1.2 to 2.0 mA/cm2 using NaH2PO4 as the phosphorous source. After hydrothermal treatment, the micrometric plate-like CDHA coating electrodeposited at 2.0 mA/cm2 is converted into nano-network Ca-rich hydroxyapatite (CRHA) one and the adhesion strength is improved from 9.5 MPa to 21.3 MPa. A mechanism of dissolution-recrystallization was also proposed for the formation of CRHA.
文摘In order to improve the quality of the bio-active coating on medical grade CoNiCrMo substrate, hydroxyapatite(HA) coatings were produced via low-temperature dip-coating route on substrates treated using various surface pre-treating methods. The surface and cross-sectional morphologies of HA coatings were observed by SEM, as well as the bonding strength between coatings and substrates after different pre-treatments were characterized according to ASTM C633. The low-temperature HA dip-coating method with the substrate merely oxidized at 600℃ can provide a high quality HA coating for CoNiCrMo, of which the bonding strength reaches (58±5)MPa, higher than that of the clinically used HA coatings on Ti-alloys produced via plasma spray route, as well as a HA coating with full crystallinity and high phase-purity, which is more in-vivo stable than plasma sprayed HA coating.
基金Project(39931702) supported by the National Natural Science Foundation of ChinaProject(041223) supported by the Natural Science Foundation of Hebei Province, China
文摘Silicon-substituted hydroxyapatite (Ca10(PO4)6-x(SiO4)x(OH)2-x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by electrophoretic deposition technique with the addition of triethanolamine (TEA) to enhance the ionization degree of Si-HA suspension. The surface structure was characterized by XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated. The results show that the depositing thickness and the images of Si-HA coating can be changed with the variation of deposition time. The XRD spectra of Ti/Si-HA coatings show the characteristic diffraction peaks of HA, and the incorporation of silicon changes the lattice parameter of the crystal. The FTIR spectra shows that the most notable effect of silicon substitution is the decrease of intensities of —OH and PO43- groups with the silicon contents increasing. XRD and EDS element analyses present that the content of silicon in the coating increases with increasing silicon concentration in the suspension. The bioactive TiO2 coating formed may improve the bond strength of the coatings. The interaction of Ti/Si-HA coating with BSA is much greater than that of Ti/HA coating, suggesting that the incorporation of silicon in HA is significant to improve the bioactive performance of HA.
基金Funded by the National Natural Science Foundation of China(No.52002159)the Open Foundation of Hubei Provincial Key Laboratory of Green Materials for Light Industry(No.201611B12)the Open Fund of Science and Technology on Thermal Energy and Power Laboratory(No.TPL2018A03)。
文摘AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability.