Mimicking the structure of natural bone collagen fibers/hydroxyapatite(HA)to synthesize large size of HA for accelerated bone repair remains a challenge.Herein,silicon nitride nanowires(SN)-graphene(GE)was designed by...Mimicking the structure of natural bone collagen fibers/hydroxyapatite(HA)to synthesize large size of HA for accelerated bone repair remains a challenge.Herein,silicon nitride nanowires(SN)-graphene(GE)was designed by the chemical vapor deposition,forming SN-GE(SG)similar to collagen fibers.Then,the large size HA was assembled onto SG by pulsed electrochemical deposition,the SG/HA(SGH)mimics the collagen fibers/HA structure of bone.The introduction of SG induces HA to large size grow in the form of coral-like.HA can be grown on a large size inextricably with the existence of GE modified layers.On the one hand,the upright GE sheets effectively increases the surface roughness which enhances the nucleation site of HA.On the other hand,the C=O provides chemical bonding and induces HA nucle-ation.Compared with SN/HA(SH),the porosity of SGH decreased by 71%.The average diameter of the SGH is(9.76±0.25)mm.Compared with SH,the diameter of SGH is 22 times larger than the diameter of SH.Indicating that SG induces large size growth of HA.Our work can provide a general strategy for the efficient preparation of biological scaffolds with large size HA that can be used in bone tissue engineering.展开更多
Extensive attention has been drawn to the development of carbon-matrix composites for application in the aerospace and military industry,where a combination of high mechanical strength and excellent frictional propert...Extensive attention has been drawn to the development of carbon-matrix composites for application in the aerospace and military industry,where a combination of high mechanical strength and excellent frictional properties are required.Herein,carbon-matrix composites reinforced by Si_(3)N_(4)nanowires@pyrolytic carbon nanolayers(Si_(3)N_(4nws)@PyCnls)coupled with hydroxyapatite nanosheets is reported.The Si_(3)N_(4nws)@PyCnls(SP)with coaxial structure could increase the surface roughness of Si_(3)N_(4nws)and promote the stress transfer to the carbon matrix,whereas the porous hydroxyapatite nanosheets favor the infiltration of the carbon matrix and promote the interfacial bonding between the SP and carbon matrix.The carbon matrix composites reinforced by SP coupled with hydroxyapatite nanosheets(Si_(3)N_(4nws)@PyCnls-HA-C)exhibit excellent mechanical strength.Compare with the conventional Si_(3)N_(4nws)reinforced carbon composites,Si_(3)N_(4nws)@PyCnls-HA-C(SPHC)have 162%and 249%improvement in flexural strength and elastic modulus,respectively.Moreover,the friction coefficient and wear rate decreased by 53%and 23%,respectively.This study provides a co-reinforcement strategy generated by SP coupled with hydroxyapatite nanosheets for effective improvement of mechanical and frictional properties of carbon matrix composites that are used for aerospace and military industry applications.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.51872232the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(Grant No.136-QP-2015)and“111”project of China(B08040)+2 种基金The Key Scientific and Technological Innovation Research Team of Shaanxi Province(2022TD-31)Project supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2067)The Key R&D Program of Shaanxi Province(2021ZDLGY14-04).
文摘Mimicking the structure of natural bone collagen fibers/hydroxyapatite(HA)to synthesize large size of HA for accelerated bone repair remains a challenge.Herein,silicon nitride nanowires(SN)-graphene(GE)was designed by the chemical vapor deposition,forming SN-GE(SG)similar to collagen fibers.Then,the large size HA was assembled onto SG by pulsed electrochemical deposition,the SG/HA(SGH)mimics the collagen fibers/HA structure of bone.The introduction of SG induces HA to large size grow in the form of coral-like.HA can be grown on a large size inextricably with the existence of GE modified layers.On the one hand,the upright GE sheets effectively increases the surface roughness which enhances the nucleation site of HA.On the other hand,the C=O provides chemical bonding and induces HA nucle-ation.Compared with SN/HA(SH),the porosity of SGH decreased by 71%.The average diameter of the SGH is(9.76±0.25)mm.Compared with SH,the diameter of SGH is 22 times larger than the diameter of SH.Indicating that SG induces large size growth of HA.Our work can provide a general strategy for the efficient preparation of biological scaffolds with large size HA that can be used in bone tissue engineering.
基金his work was supported by the National Natural Science Foundation of China under Grant Nos.51872232the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(Grant No.136-QP-2015),the“111”project of China(B08040)+1 种基金the National Training Program of Innovation and Entrepreneurship for Undergraduates(Grand No.S202010699336)Project supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2067).
文摘Extensive attention has been drawn to the development of carbon-matrix composites for application in the aerospace and military industry,where a combination of high mechanical strength and excellent frictional properties are required.Herein,carbon-matrix composites reinforced by Si_(3)N_(4)nanowires@pyrolytic carbon nanolayers(Si_(3)N_(4nws)@PyCnls)coupled with hydroxyapatite nanosheets is reported.The Si_(3)N_(4nws)@PyCnls(SP)with coaxial structure could increase the surface roughness of Si_(3)N_(4nws)and promote the stress transfer to the carbon matrix,whereas the porous hydroxyapatite nanosheets favor the infiltration of the carbon matrix and promote the interfacial bonding between the SP and carbon matrix.The carbon matrix composites reinforced by SP coupled with hydroxyapatite nanosheets(Si_(3)N_(4nws)@PyCnls-HA-C)exhibit excellent mechanical strength.Compare with the conventional Si_(3)N_(4nws)reinforced carbon composites,Si_(3)N_(4nws)@PyCnls-HA-C(SPHC)have 162%and 249%improvement in flexural strength and elastic modulus,respectively.Moreover,the friction coefficient and wear rate decreased by 53%and 23%,respectively.This study provides a co-reinforcement strategy generated by SP coupled with hydroxyapatite nanosheets for effective improvement of mechanical and frictional properties of carbon matrix composites that are used for aerospace and military industry applications.