Density functional theory and GGA-PW91 exchange correlation function were performed to simulate the bonding behavior of hydroxyl and epoxy groups on the graphene surface. We compared the different binding energies for...Density functional theory and GGA-PW91 exchange correlation function were performed to simulate the bonding behavior of hydroxyl and epoxy groups on the graphene surface. We compared the different binding energies for two epoxy groups, as well as one hydroxyl group and one epoxy group on all possible positions within a 6-fold ring, respectively. The calculated results suggest that two oxygen-containing groups always tend to bind with the neighboring carbon atoms at the opposite sides. Moreover, two hydroxyl groups on the meta position are unstable, and one of the hydroxyl groups easily migrates to the para position. In contrast to the disperse arrangement, the aggregation of multiply hydroxyl groups largely enhances the binding energy of every hydroxyl group. It is worth noting that the binding sites and hydrogen bonds play an important role in stability. Our work further points out the number of oxygen-containing groups and the location of oxide region largely influence the electronic properties of graphene oxide.展开更多
The thermodynamic properties of dibenzofurans (DFs), xanthones (XTs) and an-thraquinones (AQs) with one and two positions substituted with hydroxyls in the ideal gas state at 298.15 K and 1.013×10^5 pa were...The thermodynamic properties of dibenzofurans (DFs), xanthones (XTs) and an-thraquinones (AQs) with one and two positions substituted with hydroxyls in the ideal gas state at 298.15 K and 1.013×10^5 pa were calculated at the B3LYP/6-311G^* level using Gaussian 03 program. The isodesmic reactions were designed to calculate the standard free energy of formation (△fG^θ). Three types of hydrogen bonds exist in the three kinds of chemicals and their bond energies were ascertained as 7-15, 15-23 and 49-58 kJ·mo1^-1 respectively by comparing the △fG^θ values. Electronic density topology analysis was applied to validate the strength of bond.展开更多
New electron donors with hydroxyl groups were synthesized and characterized spectroscopically. Their redox potentials were determined with cyclic voltammetry, and the comparison with BEDT-TTF [Bis(ethylenedithio)tetra...New electron donors with hydroxyl groups were synthesized and characterized spectroscopically. Their redox potentials were determined with cyclic voltammetry, and the comparison with BEDT-TTF [Bis(ethylenedithio)tetrathiafulvalene] in this aspect was made. These results indicated that the new electron donors had similar electron-donating capabilities as BEDT-TTF.展开更多
Raman vibrational spectra of the selected basic (hydroxyl OH and deuteroxyl OD) transition-metal halides, geomet- rically frustrated material series α-, β-, γ-Cu2(OH)3Cl, α-Cu2(OH)3Br, β-Ni2(OH)3Cl, β-Co...Raman vibrational spectra of the selected basic (hydroxyl OH and deuteroxyl OD) transition-metal halides, geomet- rically frustrated material series α-, β-, γ-Cu2(OH)3Cl, α-Cu2(OH)3Br, β-Ni2(OH)3Cl, β-Co2(OH)3Cl, β-Co2(OH)3Br, γ-Cu2(OD)3Cl, and β-Co2(OD)3Cl are measured at room temperature and analysed to investigate the relationship be- tween the microstructured OH environments and their respective Raman spectra. Among these selected samples, the last two are used to determine the OH stretching vibration region (3600 cm-1-3300 cm-1) and OH bending vibra- tion region (1000 cm-1-600 cm-1) of OH systems in the spectra. Through the comparative analysis of the distances d(metal-O), d(O-halogen), and d(OH), the strong metal-O interaction and trimeric hydrogen bond (Car, C8 or C1 symmetry) are found in every material, but both determine simultaneously an ultimate d(OH), and therefore an OH stretching vibration frequency. According to the approximately linear relationship between the OH stretching vibration frequency and d(OH), some unavailable d(OH) are guessed and some doubtful d(OH) are suggested to be corrected. In addition, it is demonstrated in brief that the OH bending vibration frequency is also of importance to check the more detailed crystal microstructure relating to the OH group.展开更多
The adenine-thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydroge...The adenine-thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311 ++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 〈 HN61 〈 HN62 〈 H2 〈 H8.展开更多
The reaction mechanism of 1-chloroethane with hydroxyl radical has been investigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same t...The reaction mechanism of 1-chloroethane with hydroxyl radical has been investigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same theoretical level. It was found that hydrogen abstraction pathway is the most favorable. There are two hydrogen abstraction pathways with activation barriers of 0.630 and 4.988 kJ/mol, respectively, while chlorine abstraction pathway was not found. It was observed that activation energies have a more reasonable correlation with the reaction enthalpy changes (ΔHr) than with bond dissociation enthalpies (BDE).展开更多
The minerals of chevkinite group were commonly considered to be anhydrous minerals. The infrared absorption spectrum of natural nonmetamict chevkinite-(Ce) from the aegirine-alkali granite, Miannlng, Sichuan Provinc...The minerals of chevkinite group were commonly considered to be anhydrous minerals. The infrared absorption spectrum of natural nonmetamict chevkinite-(Ce) from the aegirine-alkali granite, Miannlng, Sichuan Province, China, exhibited two broad peaks in the 3600-2800 cm^-1 region owing to the OH stretching. The corresponding H20 content required for the charge balance in formula was 1.27%. The O-H. … O bond lengths maight cover from 0.2658 to 0.2794 nm by the correlated OH stretching energies. An electrostatic charge balance for chevkinite-(Ce) based on the assigned site-population from chemical data was calculated without the hydrogen contribution. The resulting empirical bond-valence sum on 06, 08, 02, 03, 05, and 04 ranged from 1.73 to 1.95 vu. The partial substitution of O by OH may occur in four atom sites: 06, 02, 04, and 05. The small differences in the bond-valence sums between the supposed donors and acceptors may mean a mixed donor/acceptor role of the involved oxygen atoms. The IR spectral features between 3394 and 3035 cm-1 consisted of various hydrous species at different structural sites and orientations. The OH groups in the chevkinlte-(Ce) appeared to be involved in local charge imbalance in the structure and to be present when the mineral crystallized hydrothermally.展开更多
Ab initio and density functional theory calculations have been carried out to investigate the reaction of hydroxyl radical (OH) and 1,1,1-trichloroethane (CH3CCl3). The potential energy surface has been given acco...Ab initio and density functional theory calculations have been carried out to investigate the reaction of hydroxyl radical (OH) and 1,1,1-trichloroethane (CH3CCl3). The potential energy surface has been given according to the relative energies calculated at the MP2/cc-pVTZ level after the spin projection (PMP2). Five reaction channels were identified and the intramolecular hydrogen bonding was observed in some transition state structures. The barrier heights and reaction enthalpies calculated for all possible channels show that the hydrogen abstraction channel is predominant kinetically and thermodynamically. The contribution from other channels was predicted to be minor.展开更多
Mid-infrared absorption and Raman spectra of the geometrically frustrated material series, hydroxyl cobalt halides β-CO2(OH)3Cl and β-CO2(OH)3Br, are first, to the best of our knowledge, measured at room tempera...Mid-infrared absorption and Raman spectra of the geometrically frustrated material series, hydroxyl cobalt halides β-CO2(OH)3Cl and β-CO2(OH)3Br, are first, to the best of our knowledge, measured at room temperature, to study the corresponding relationship between their vibrational spectral properties and crystal microstructures. Through the comparative analysis of the four spectra we have categorically assigned the OH-related vibration modes of hydroxyl groups in the trimeric hydrogen bond environment (Co3 =OH)3 … Cl/Br, and tentatively suggested vibration modes of O-Co-O, Co O and Cl/Br-Co-Cl/Br units. These results can also become the basis for analysing their low-temperature spectral properties, which can help to understand the underlying physics of their exotic geometric frustration phenomena around phase transition temperatures.展开更多
基金supported by the Foundation of State Key Laboratory of Coal Combustion of Huazhong University of Science and Technology(FSKLCC1110)the Natural Science Foundation of Fujian Province(2012J01032,2012J01041)
文摘Density functional theory and GGA-PW91 exchange correlation function were performed to simulate the bonding behavior of hydroxyl and epoxy groups on the graphene surface. We compared the different binding energies for two epoxy groups, as well as one hydroxyl group and one epoxy group on all possible positions within a 6-fold ring, respectively. The calculated results suggest that two oxygen-containing groups always tend to bind with the neighboring carbon atoms at the opposite sides. Moreover, two hydroxyl groups on the meta position are unstable, and one of the hydroxyl groups easily migrates to the para position. In contrast to the disperse arrangement, the aggregation of multiply hydroxyl groups largely enhances the binding energy of every hydroxyl group. It is worth noting that the binding sites and hydrogen bonds play an important role in stability. Our work further points out the number of oxygen-containing groups and the location of oxide region largely influence the electronic properties of graphene oxide.
文摘The thermodynamic properties of dibenzofurans (DFs), xanthones (XTs) and an-thraquinones (AQs) with one and two positions substituted with hydroxyls in the ideal gas state at 298.15 K and 1.013×10^5 pa were calculated at the B3LYP/6-311G^* level using Gaussian 03 program. The isodesmic reactions were designed to calculate the standard free energy of formation (△fG^θ). Three types of hydrogen bonds exist in the three kinds of chemicals and their bond energies were ascertained as 7-15, 15-23 and 49-58 kJ·mo1^-1 respectively by comparing the △fG^θ values. Electronic density topology analysis was applied to validate the strength of bond.
基金the Chinese Academy of Sciences(KJ951-A1-501-03)
文摘New electron donors with hydroxyl groups were synthesized and characterized spectroscopically. Their redox potentials were determined with cyclic voltammetry, and the comparison with BEDT-TTF [Bis(ethylenedithio)tetrathiafulvalene] in this aspect was made. These results indicated that the new electron donors had similar electron-donating capabilities as BEDT-TTF.
基金Project supported by the Grant-in-Aid for Scientific Research on Priority Area from the Ministry of Education,Culture,Sports,Science and Technology,Japan (Grant No. Tokutei 22014008)
文摘Raman vibrational spectra of the selected basic (hydroxyl OH and deuteroxyl OD) transition-metal halides, geomet- rically frustrated material series α-, β-, γ-Cu2(OH)3Cl, α-Cu2(OH)3Br, β-Ni2(OH)3Cl, β-Co2(OH)3Cl, β-Co2(OH)3Br, γ-Cu2(OD)3Cl, and β-Co2(OD)3Cl are measured at room temperature and analysed to investigate the relationship be- tween the microstructured OH environments and their respective Raman spectra. Among these selected samples, the last two are used to determine the OH stretching vibration region (3600 cm-1-3300 cm-1) and OH bending vibra- tion region (1000 cm-1-600 cm-1) of OH systems in the spectra. Through the comparative analysis of the distances d(metal-O), d(O-halogen), and d(OH), the strong metal-O interaction and trimeric hydrogen bond (Car, C8 or C1 symmetry) are found in every material, but both determine simultaneously an ultimate d(OH), and therefore an OH stretching vibration frequency. According to the approximately linear relationship between the OH stretching vibration frequency and d(OH), some unavailable d(OH) are guessed and some doubtful d(OH) are suggested to be corrected. In addition, it is demonstrated in brief that the OH bending vibration frequency is also of importance to check the more detailed crystal microstructure relating to the OH group.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11025524 and 11161130520)the National Basic Research Program of China (Grant No.2010CB832903)+2 种基金the Natural Science Foundation of Guizhou Province of China (Grant No.J20122141)the Fund in the framework of a Frontier of Novelty Program of the Chinese Academy of Sciences for one of the authors (Wang Dong-Qi) (Grant No.Y1515540U1)the Research Fund for the Doctoral Program of Jiangxi Science and Technology Normal University (Grant No.3000990110)
文摘The adenine-thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311 ++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 〈 HN61 〈 HN62 〈 H2 〈 H8.
基金This work was supported by the grants from NSFC Foundations (No. 20473090 and 20633070) Foundation from Harbin Normal University (KM2005-02)
文摘The reaction mechanism of 1-chloroethane with hydroxyl radical has been investigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same theoretical level. It was found that hydrogen abstraction pathway is the most favorable. There are two hydrogen abstraction pathways with activation barriers of 0.630 and 4.988 kJ/mol, respectively, while chlorine abstraction pathway was not found. It was observed that activation energies have a more reasonable correlation with the reaction enthalpy changes (ΔHr) than with bond dissociation enthalpies (BDE).
基金the National Natural Science Foundation of China (40572029)
文摘The minerals of chevkinite group were commonly considered to be anhydrous minerals. The infrared absorption spectrum of natural nonmetamict chevkinite-(Ce) from the aegirine-alkali granite, Miannlng, Sichuan Province, China, exhibited two broad peaks in the 3600-2800 cm^-1 region owing to the OH stretching. The corresponding H20 content required for the charge balance in formula was 1.27%. The O-H. … O bond lengths maight cover from 0.2658 to 0.2794 nm by the correlated OH stretching energies. An electrostatic charge balance for chevkinite-(Ce) based on the assigned site-population from chemical data was calculated without the hydrogen contribution. The resulting empirical bond-valence sum on 06, 08, 02, 03, 05, and 04 ranged from 1.73 to 1.95 vu. The partial substitution of O by OH may occur in four atom sites: 06, 02, 04, and 05. The small differences in the bond-valence sums between the supposed donors and acceptors may mean a mixed donor/acceptor role of the involved oxygen atoms. The IR spectral features between 3394 and 3035 cm-1 consisted of various hydrous species at different structural sites and orientations. The OH groups in the chevkinlte-(Ce) appeared to be involved in local charge imbalance in the structure and to be present when the mineral crystallized hydrothermally.
基金supported by the National Natural Science Foundation of China (No. 20573029)the Natural Science Foundation of Heilongjiang Province (No. B200905)
文摘Ab initio and density functional theory calculations have been carried out to investigate the reaction of hydroxyl radical (OH) and 1,1,1-trichloroethane (CH3CCl3). The potential energy surface has been given according to the relative energies calculated at the MP2/cc-pVTZ level after the spin projection (PMP2). Five reaction channels were identified and the intramolecular hydrogen bonding was observed in some transition state structures. The barrier heights and reaction enthalpies calculated for all possible channels show that the hydrogen abstraction channel is predominant kinetically and thermodynamically. The contribution from other channels was predicted to be minor.
基金Project supported by the Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science (Grant No.Kiban-B 19340100)the Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education,Culture,Sports,Science and Technology,Japan (Grant No.Tokutei 22014008)
文摘Mid-infrared absorption and Raman spectra of the geometrically frustrated material series, hydroxyl cobalt halides β-CO2(OH)3Cl and β-CO2(OH)3Br, are first, to the best of our knowledge, measured at room temperature, to study the corresponding relationship between their vibrational spectral properties and crystal microstructures. Through the comparative analysis of the four spectra we have categorically assigned the OH-related vibration modes of hydroxyl groups in the trimeric hydrogen bond environment (Co3 =OH)3 … Cl/Br, and tentatively suggested vibration modes of O-Co-O, Co O and Cl/Br-Co-Cl/Br units. These results can also become the basis for analysing their low-temperature spectral properties, which can help to understand the underlying physics of their exotic geometric frustration phenomena around phase transition temperatures.