Enhancing the chemical reaction processes by means of the energy released in the collapse of micro bubbles or cavities in the cavitation flow is a new research area. In the previous work, a new approach of measuring c...Enhancing the chemical reaction processes by means of the energy released in the collapse of micro bubbles or cavities in the cavitation flow is a new research area. In the previous work, a new approach of measuring concentration of free hydroxyl radicals induced in cavitation flow by using methylene blue as the indicator was developed and used to study concentration of free radical induced in Venturi cavitation flow under various experimental conditions. In the present research, the radial evolution of a cavity bubble and the corresponding collapse pressure in sonic cavitation field are obtained by solving three different bubble dynamics equations: Rayleigh equation, Rayleigh-Plesset equation and Gilmore equation. By comparing with the experimental data on the radial evolution of a cavity bubble in the literature, it is found that the predicted results by the Gilmore equation, which takes account of the compressibility of fluid in addition to the viscosity and interfacial tension, agree with the experimental ones better than those by other two equations. Moreover, the theoretically predicted collapse pressures are consistent with the concentration of the free hydroxyl radical induced in the experimental venture. Thus, the concentration of the liberated free hydroxyl radical not only influences the reaction rate but also is used as an available parameter for measuring collapse intensity of cavities.展开更多
Some factors that affect the free radical-scavenging activety of two tea extracts were studied in vitro. It was found that concentration of tea extract or heating tea extract or treating with activated carbon and di...Some factors that affect the free radical-scavenging activety of two tea extracts were studied in vitro. It was found that concentration of tea extract or heating tea extract or treating with activated carbon and diatomite all had obvious effect on the scavenging activety of green tea extract ,but heating or treating with diaomite had less effect on the scavenging activity of black tea extract. Ascorbic acid, for having synergic effect with tea extracts, could enhance the scavenging activity of tea extracts markedly, and the contrary was cupric ion. Reducing sugars such as fructose and glucose also had some syncrgic effect to tea extracts.展开更多
The degradation efficiencies and mechanism of ozonation for the degradation of sodium acetate in aqueous solution were investigated under atmospheric pressure at room temperature (293 K). The effects of the initial ...The degradation efficiencies and mechanism of ozonation for the degradation of sodium acetate in aqueous solution were investigated under atmospheric pressure at room temperature (293 K). The effects of the initial pH value, reaction time, and concentrations ofHCO3^-, CO3^2- , CaC12, and Ca(OH)2 on the removal rate of chemical oxygen demand (COD) were studied. The results indicated that ozonation obviously improved the degradation rate of sodium acetate when the pH value of the solution was not less than 8.5. A suitable long reaction time may be helpful in increasing the COD removal rate, and a removal rate of 36.36% can be obtained after a 30-minute treatment. The COD removal rate increased firstly and decreased subsequently with the increase of the HCOj concentration (from 0 to 200 mg/L), and under the same experimental condition it reached the optimum 34.66% at the HCO3-^ concentration of 100 mg/L. The COD removal rate was 5.26% lower when the concentration of HCO3^- was 200 mg/L than when there was no HCO3^-. The COD removal rate decreased by 15.68% when the CO3^2- concentration increased from 0 to 200 mg/L. CO3^2- has a more obvious scavenging effect in inhibiting the formation of hydroxyl radicals than HCO3. CaC12 and Ca(OH)2 could increase the degradation efficiency of sodium acetate greatly, and the COD removal rates reached 65.73% and 83.46%, respectively, after a 30-minute treatment, 29.37% and 47.10% higher, was proved that the degradation of sodium acetate in the ozonation process followed the mechanismof oxidization with hydroxyl free radicals (.OH).展开更多
The anodic discharge of water to produce adsorbed hydroxyl free radicals(·OH) is considered to be a prerequisite to anodic O-transfer reactions at a PbO_2 electrode. In this work,a method was studied by means of ...The anodic discharge of water to produce adsorbed hydroxyl free radicals(·OH) is considered to be a prerequisite to anodic O-transfer reactions at a PbO_2 electrode. In this work,a method was studied by means of high-performance liquid chromatography(HPLC) combined with electrochemical detection(ED) so as to investigate the production of hydroxyl free radicals(·OH) in the process of the anodic discharge of H_2O at a PbO_2 electrode. The voltammetric data obtained at the PbO_2 electrode for the oxidation of salicylic acid to salicylate hydroxylation products(DHBAs) and the detection of DHBAs by means of HPLC-ED confirm the proposed mechanism.展开更多
The elemental tellurium nanoparticles (TeNPs) - sucrose sol was prepared by the reaction of sodium tellurite with ascorbic acid in sucrose aqueous solution. The results indicated that TeNPs were dispersion excellent...The elemental tellurium nanoparticles (TeNPs) - sucrose sol was prepared by the reaction of sodium tellurite with ascorbic acid in sucrose aqueous solution. The results indicated that TeNPs were dispersion excellent in the TeNPs - sucrose sol and the morphology of TeNPs was needle-like with about 70 nm in width and 500 nm in length. The antioxidant activity of the TeNPs - sucrose sol in vitro was estimated by pyrogallol autoxidation method, Fenton method and oxygen radical absorbance capacity (ORAC) assay. The results showed that a certain amount of TeNPs - sucrose sol could effectively scavenge superoxide anion free radical and hydroxyl free radical with scavenging rates of 73 % and 57 %, respectively. ORAC assay was used to measure the total antioxidant capacity of TeNPs - sucrose sol. The order of ORAC values was 2.25 μmol.L-1 TeNPs - 0.025 % sucrose sol 〉 0.025 % sucrose 〉 2.25 μmol.L-1 Na2TeO3 〉 1.63 μmol.L-1 ascorbic acid. The results suggested that the TeNPs - sucrose sol had the excellent antioxidant activity and TeNPs were the dominating contributors to antioxidant capacity of the TeNPs - sucrose sol.展开更多
The sonolytic degradation of 2-chlorobiphenyl was investigated. Mass spectroscopy was used to detect the products of sonolytic degradation of 2-chlorobiphenyl. The results show that the products of sonolytic degradati...The sonolytic degradation of 2-chlorobiphenyl was investigated. Mass spectroscopy was used to detect the products of sonolytic degradation of 2-chlorobiphenyl. The results show that the products of sonolytic degradation, such as biphenyl, ethyl benzene, diethylbiphenyl, dibutylbiphenyl, phenol, propylphenol and di-tert-butyl phenol are produced by thermolysis and hydroxyl free radical reactions, in which biphenyl counts for almost 40%(mole fraction) of the mother compound and others are at trace level. Rapid accumulation of chloride ion shows quick dechlorination, and 78% organic chlorine is converted into chloride ion. Free radical scavengers, bicarbonate and carbonate, decrease the reaction rate of sonolytic degradation of 2-chlorobiphenyl significantly, and the pseudo 1st order rate constant of sonolytic degradation of 2-chlorobiphenyl decreases linearly with the natural logarithm of the concentration of the added free radical scavenger, showing that the pyrolysis and hydroxyl free radical reaction are the two major pathways for the sonolytic degradation of 2-chlorobiphenyl, in which the hydroxyl radical concentration is estimated to be 1×10-10 (mol/L.)展开更多
基金Supported by the National Natural Science Foundation of China (10472024).
文摘Enhancing the chemical reaction processes by means of the energy released in the collapse of micro bubbles or cavities in the cavitation flow is a new research area. In the previous work, a new approach of measuring concentration of free hydroxyl radicals induced in cavitation flow by using methylene blue as the indicator was developed and used to study concentration of free radical induced in Venturi cavitation flow under various experimental conditions. In the present research, the radial evolution of a cavity bubble and the corresponding collapse pressure in sonic cavitation field are obtained by solving three different bubble dynamics equations: Rayleigh equation, Rayleigh-Plesset equation and Gilmore equation. By comparing with the experimental data on the radial evolution of a cavity bubble in the literature, it is found that the predicted results by the Gilmore equation, which takes account of the compressibility of fluid in addition to the viscosity and interfacial tension, agree with the experimental ones better than those by other two equations. Moreover, the theoretically predicted collapse pressures are consistent with the concentration of the free hydroxyl radical induced in the experimental venture. Thus, the concentration of the liberated free hydroxyl radical not only influences the reaction rate but also is used as an available parameter for measuring collapse intensity of cavities.
文摘Some factors that affect the free radical-scavenging activety of two tea extracts were studied in vitro. It was found that concentration of tea extract or heating tea extract or treating with activated carbon and diatomite all had obvious effect on the scavenging activety of green tea extract ,but heating or treating with diaomite had less effect on the scavenging activity of black tea extract. Ascorbic acid, for having synergic effect with tea extracts, could enhance the scavenging activity of tea extracts markedly, and the contrary was cupric ion. Reducing sugars such as fructose and glucose also had some syncrgic effect to tea extracts.
基金supported by the Key Projects in the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period(Grant No2011BAC06B05)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Grants NoPLN1126 and PLN1127)
文摘The degradation efficiencies and mechanism of ozonation for the degradation of sodium acetate in aqueous solution were investigated under atmospheric pressure at room temperature (293 K). The effects of the initial pH value, reaction time, and concentrations ofHCO3^-, CO3^2- , CaC12, and Ca(OH)2 on the removal rate of chemical oxygen demand (COD) were studied. The results indicated that ozonation obviously improved the degradation rate of sodium acetate when the pH value of the solution was not less than 8.5. A suitable long reaction time may be helpful in increasing the COD removal rate, and a removal rate of 36.36% can be obtained after a 30-minute treatment. The COD removal rate increased firstly and decreased subsequently with the increase of the HCOj concentration (from 0 to 200 mg/L), and under the same experimental condition it reached the optimum 34.66% at the HCO3-^ concentration of 100 mg/L. The COD removal rate was 5.26% lower when the concentration of HCO3^- was 200 mg/L than when there was no HCO3^-. The COD removal rate decreased by 15.68% when the CO3^2- concentration increased from 0 to 200 mg/L. CO3^2- has a more obvious scavenging effect in inhibiting the formation of hydroxyl radicals than HCO3. CaC12 and Ca(OH)2 could increase the degradation efficiency of sodium acetate greatly, and the COD removal rates reached 65.73% and 83.46%, respectively, after a 30-minute treatment, 29.37% and 47.10% higher, was proved that the degradation of sodium acetate in the ozonation process followed the mechanismof oxidization with hydroxyl free radicals (.OH).
文摘The anodic discharge of water to produce adsorbed hydroxyl free radicals(·OH) is considered to be a prerequisite to anodic O-transfer reactions at a PbO_2 electrode. In this work,a method was studied by means of high-performance liquid chromatography(HPLC) combined with electrochemical detection(ED) so as to investigate the production of hydroxyl free radicals(·OH) in the process of the anodic discharge of H_2O at a PbO_2 electrode. The voltammetric data obtained at the PbO_2 electrode for the oxidation of salicylic acid to salicylate hydroxylation products(DHBAs) and the detection of DHBAs by means of HPLC-ED confirm the proposed mechanism.
基金Funded by the National Natural Science Foundation of China(No.21075053)
文摘The elemental tellurium nanoparticles (TeNPs) - sucrose sol was prepared by the reaction of sodium tellurite with ascorbic acid in sucrose aqueous solution. The results indicated that TeNPs were dispersion excellent in the TeNPs - sucrose sol and the morphology of TeNPs was needle-like with about 70 nm in width and 500 nm in length. The antioxidant activity of the TeNPs - sucrose sol in vitro was estimated by pyrogallol autoxidation method, Fenton method and oxygen radical absorbance capacity (ORAC) assay. The results showed that a certain amount of TeNPs - sucrose sol could effectively scavenge superoxide anion free radical and hydroxyl free radical with scavenging rates of 73 % and 57 %, respectively. ORAC assay was used to measure the total antioxidant capacity of TeNPs - sucrose sol. The order of ORAC values was 2.25 μmol.L-1 TeNPs - 0.025 % sucrose sol 〉 0.025 % sucrose 〉 2.25 μmol.L-1 Na2TeO3 〉 1.63 μmol.L-1 ascorbic acid. The results suggested that the TeNPs - sucrose sol had the excellent antioxidant activity and TeNPs were the dominating contributors to antioxidant capacity of the TeNPs - sucrose sol.
文摘The sonolytic degradation of 2-chlorobiphenyl was investigated. Mass spectroscopy was used to detect the products of sonolytic degradation of 2-chlorobiphenyl. The results show that the products of sonolytic degradation, such as biphenyl, ethyl benzene, diethylbiphenyl, dibutylbiphenyl, phenol, propylphenol and di-tert-butyl phenol are produced by thermolysis and hydroxyl free radical reactions, in which biphenyl counts for almost 40%(mole fraction) of the mother compound and others are at trace level. Rapid accumulation of chloride ion shows quick dechlorination, and 78% organic chlorine is converted into chloride ion. Free radical scavengers, bicarbonate and carbonate, decrease the reaction rate of sonolytic degradation of 2-chlorobiphenyl significantly, and the pseudo 1st order rate constant of sonolytic degradation of 2-chlorobiphenyl decreases linearly with the natural logarithm of the concentration of the added free radical scavenger, showing that the pyrolysis and hydroxyl free radical reaction are the two major pathways for the sonolytic degradation of 2-chlorobiphenyl, in which the hydroxyl radical concentration is estimated to be 1×10-10 (mol/L.)