A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
To simplify the composite propellant formulation and address the current issue of the single-functionality present in existing additives,the multi-cyano,amine-based polybutadiene(AEHTPB-CN)was prepared based on AEHTPB...To simplify the composite propellant formulation and address the current issue of the single-functionality present in existing additives,the multi-cyano,amine-based polybutadiene(AEHTPB-CN)was prepared based on AEHTPB by adopting appropriate synthesis strategies.By replacing 10% of HTPB binder in the propellant formulation,it can effectively enhance the interfacial bond strength between the propellant binder matrix and solid fillers(AP(ammonium perchlorate)and RDX(cyclotrimethylene-trinitramine)),the mechanical properties of the HTPB/AP/RDX/Al propellant were superior to blank control propellant with an improvement of 35.4% in tensile strength,62.0% enhancement in elongation at break,and reduce the propellant burn rate by 10.7% with any energy loss.The function mechanism of AEHTPB-CN was systematically elucidated through experiments and computer simulation techniques.The results show that the tertiary amine group in AEHTPB-CN can react with AP to form ammonium ionic bonds,and the hydroxyl and cyano groups can form hydrogen bonding interactions with AP,which enables AEHTPB-CN to be firmly adsorbed on the AP surface through chemical and physical interactions.For RDX,the interfacial bonding effect of AEHTPB-CN is attributed to their ability to form C-H···N≡C weak hydrogen bonding interaction between the cyano group and RDX methylene group.展开更多
With the purpose of investigating the effects of confining pressure and aging on the mechanical properties of Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant,tensile tests of thermal accelerate...With the purpose of investigating the effects of confining pressure and aging on the mechanical properties of Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant,tensile tests of thermal accelerated aged propellant samples under room temperature and different confining pressure conditions were performed through the use of a self-made confining pressure device and conventional testing machine.Afterwards,the maximum tensile stressσmand the corresponding strainεm for the propellant under different test conditions were obtained and analyzed.The results indicate that confining pressure and aging can significantly affect the mechanical properties of HTPB propellant,and the coupled effects are very complex.On the one hand,the stressσmincreases as a whole when confining pressure becomes higher or thermal aging time rises.Besides,this stress is more sensitive to aging with increasing confining pressure.There are almost three regions in the stress increments(σm P-σm0)/σm0and thermal aging time curves for HTPB propellant.The maximum value of the stress increment(σm P-σm0)/σm0for the propellant is about 98%at 7.0 MPa and 170 d.On the other hand,the strainεm decreases with increasing thermal aging time under the whole confining pressure conditions.However,the variation of this strain with confining pressure is more complex at various thermal aging time,which is different from that of unaged solid propellant in previous researches.In addition,this strain is slightly less sensitive to aging as the confining pressure increases.Furthermore,there is also a critical confining pressure in this investigation,whose value is between 0.15 MPa and 4.0 MPa.Beyond this critical pressure,the trends of the stressσmand the corresponding strainεm all change.Moreover,there are some critical thermal aging time for the stress increment(σm P-σm0)/σm0and strain increment(εm P-εm0)/εm0of HTPB propellant in this investigation,which are about at 35,50 and 170 d.Finally,based on the twin-shear strength theory,a new modified nonlinear strength criterion of thermal aged HTPB propellant under confining pressure was proposed.And the whole errors of fitted results are lower than 6%.Therefore,the proposed strength criterion can be selected as a failure criterion for the analysis the failure properties of aged HTPB propellant under different confining pressures,the structural integrity of solid propellant grain and the safety of solid rocket motor during ignition operation after long periods of storage.展开更多
The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were expl...The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were explored by apply-ing an accelerated aging program for 90 day at 70 ℃. The HTPB propellant matrix with the diisooctyl sebacate(DOS)as plasti-cizers and diisooctyl azelate(DOZ), antioxidants as N,N ′-Diphenyl-p-phenylenediamine(AO) and 2,2′-methylenebis(4-methyl-6-tert-butylphenol)(cyanox 2246)and burning rate modifiers as barium ferrite(BF),copper chromites(CC)and fer-ric oxide(FO)were varied. Results show that sample(S1)which based on DOS decreases the stress value and increases the strain value which considered to be an excellent start for aging program. Sample(S3)containing AO presents the higher resis-tance to oxidation showing the better performance that reflects on increasing the shelf life of the composite solid propellant mo-tor. Sample(S5)which based on BF enhances the ballistic performance among over the other tested two samples. The accelerat-ed aging program allowed us to estimate the motor in-service lifetime.展开更多
With the greatly increasing amount of discarded hydroxyl-terminated polybutadiene(HTPB)propellant year by year,it is of high significance to study the safe,efficient and environmental processing method of disposal HTP...With the greatly increasing amount of discarded hydroxyl-terminated polybutadiene(HTPB)propellant year by year,it is of high significance to study the safe,efficient and environmental processing method of disposal HTPB propellant.In this paper,the decomposition agents are formulated for degrading the waste composite solid propellant.It is found that the following formulations of butanone 25%-55%,xylene 30%-75%,deionized water 40%-45%have effective influence on the degradation of the waste composite solid propellant.The proper degradation time is found to be about 7-8 h.With the help of infrared spectrum analysis,scanning electron microscope imaging,thermogravimetric analysis and solvent viscosity test,it was proved that after degradation reaction on the propellant sometimes,a large number of irregular fractures occurred in bulk resulting from effective degradation.The characterization of the propellant after degradation showed that the hardness of the propellant decreased,the viscosity increased,and a large number of holes and cracks appeared on the surface.The results showed that the formulated degradation agent and degradation condition perform good degradation effects on HTPB solid propellant.展开更多
Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC)....Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC). The characteristic temperature of curing system was measured for calculating kinetic parameters and establishing curing reaction kinetic equations. The results show that activation energy (Ea) of uncatalyzed HTPB-TDI curing system is 51.29 kJmol-1, and TPB decreases Ea to 46.43 kJ'mol-1. Catalyst lowers reaction temperature and shortens curing time through decreasing ac- tivation energy of curing reaction and accelerating reaction rate. TPB can increase the reaction rate at 27 ℃ to the value of uncatalyzed system at 80 ℃. The catalytic activity reaches the maximum when concentration is 0.5 %.展开更多
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
文摘To simplify the composite propellant formulation and address the current issue of the single-functionality present in existing additives,the multi-cyano,amine-based polybutadiene(AEHTPB-CN)was prepared based on AEHTPB by adopting appropriate synthesis strategies.By replacing 10% of HTPB binder in the propellant formulation,it can effectively enhance the interfacial bond strength between the propellant binder matrix and solid fillers(AP(ammonium perchlorate)and RDX(cyclotrimethylene-trinitramine)),the mechanical properties of the HTPB/AP/RDX/Al propellant were superior to blank control propellant with an improvement of 35.4% in tensile strength,62.0% enhancement in elongation at break,and reduce the propellant burn rate by 10.7% with any energy loss.The function mechanism of AEHTPB-CN was systematically elucidated through experiments and computer simulation techniques.The results show that the tertiary amine group in AEHTPB-CN can react with AP to form ammonium ionic bonds,and the hydroxyl and cyano groups can form hydrogen bonding interactions with AP,which enables AEHTPB-CN to be firmly adsorbed on the AP surface through chemical and physical interactions.For RDX,the interfacial bonding effect of AEHTPB-CN is attributed to their ability to form C-H···N≡C weak hydrogen bonding interaction between the cyano group and RDX methylene group.
基金the financial support of the National Natural Funds in China(No.11772352)the Science project of Shaanxi Province(Nos.20190504 and 2019SZS-09)。
文摘With the purpose of investigating the effects of confining pressure and aging on the mechanical properties of Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant,tensile tests of thermal accelerated aged propellant samples under room temperature and different confining pressure conditions were performed through the use of a self-made confining pressure device and conventional testing machine.Afterwards,the maximum tensile stressσmand the corresponding strainεm for the propellant under different test conditions were obtained and analyzed.The results indicate that confining pressure and aging can significantly affect the mechanical properties of HTPB propellant,and the coupled effects are very complex.On the one hand,the stressσmincreases as a whole when confining pressure becomes higher or thermal aging time rises.Besides,this stress is more sensitive to aging with increasing confining pressure.There are almost three regions in the stress increments(σm P-σm0)/σm0and thermal aging time curves for HTPB propellant.The maximum value of the stress increment(σm P-σm0)/σm0for the propellant is about 98%at 7.0 MPa and 170 d.On the other hand,the strainεm decreases with increasing thermal aging time under the whole confining pressure conditions.However,the variation of this strain with confining pressure is more complex at various thermal aging time,which is different from that of unaged solid propellant in previous researches.In addition,this strain is slightly less sensitive to aging as the confining pressure increases.Furthermore,there is also a critical confining pressure in this investigation,whose value is between 0.15 MPa and 4.0 MPa.Beyond this critical pressure,the trends of the stressσmand the corresponding strainεm all change.Moreover,there are some critical thermal aging time for the stress increment(σm P-σm0)/σm0and strain increment(εm P-εm0)/εm0of HTPB propellant in this investigation,which are about at 35,50 and 170 d.Finally,based on the twin-shear strength theory,a new modified nonlinear strength criterion of thermal aged HTPB propellant under confining pressure was proposed.And the whole errors of fitted results are lower than 6%.Therefore,the proposed strength criterion can be selected as a failure criterion for the analysis the failure properties of aged HTPB propellant under different confining pressures,the structural integrity of solid propellant grain and the safety of solid rocket motor during ignition operation after long periods of storage.
文摘The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were explored by apply-ing an accelerated aging program for 90 day at 70 ℃. The HTPB propellant matrix with the diisooctyl sebacate(DOS)as plasti-cizers and diisooctyl azelate(DOZ), antioxidants as N,N ′-Diphenyl-p-phenylenediamine(AO) and 2,2′-methylenebis(4-methyl-6-tert-butylphenol)(cyanox 2246)and burning rate modifiers as barium ferrite(BF),copper chromites(CC)and fer-ric oxide(FO)were varied. Results show that sample(S1)which based on DOS decreases the stress value and increases the strain value which considered to be an excellent start for aging program. Sample(S3)containing AO presents the higher resis-tance to oxidation showing the better performance that reflects on increasing the shelf life of the composite solid propellant mo-tor. Sample(S5)which based on BF enhances the ballistic performance among over the other tested two samples. The accelerat-ed aging program allowed us to estimate the motor in-service lifetime.
基金Supported by the National Natural Science Foundation of China(21706199)。
文摘With the greatly increasing amount of discarded hydroxyl-terminated polybutadiene(HTPB)propellant year by year,it is of high significance to study the safe,efficient and environmental processing method of disposal HTPB propellant.In this paper,the decomposition agents are formulated for degrading the waste composite solid propellant.It is found that the following formulations of butanone 25%-55%,xylene 30%-75%,deionized water 40%-45%have effective influence on the degradation of the waste composite solid propellant.The proper degradation time is found to be about 7-8 h.With the help of infrared spectrum analysis,scanning electron microscope imaging,thermogravimetric analysis and solvent viscosity test,it was proved that after degradation reaction on the propellant sometimes,a large number of irregular fractures occurred in bulk resulting from effective degradation.The characterization of the propellant after degradation showed that the hardness of the propellant decreased,the viscosity increased,and a large number of holes and cracks appeared on the surface.The results showed that the formulated degradation agent and degradation condition perform good degradation effects on HTPB solid propellant.
文摘Catalysis effect of triphenyl bismuth (TPB) on kinetics of hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing reaction was studied by non-isothermal differential scanning calorimetry (DSC). The characteristic temperature of curing system was measured for calculating kinetic parameters and establishing curing reaction kinetic equations. The results show that activation energy (Ea) of uncatalyzed HTPB-TDI curing system is 51.29 kJmol-1, and TPB decreases Ea to 46.43 kJ'mol-1. Catalyst lowers reaction temperature and shortens curing time through decreasing ac- tivation energy of curing reaction and accelerating reaction rate. TPB can increase the reaction rate at 27 ℃ to the value of uncatalyzed system at 80 ℃. The catalytic activity reaches the maximum when concentration is 0.5 %.