Hydroxylamine sulfate (HAS) and sodium nitrite are used as the accelerators for zinc phos- phate coating on high carbon steel. Phase evolution of phosphate coating was investigated by X-ray diffraction. It is found ...Hydroxylamine sulfate (HAS) and sodium nitrite are used as the accelerators for zinc phos- phate coating on high carbon steel. Phase evolution of phosphate coating was investigated by X-ray diffraction. It is found that the phosphating coatings are mainly composed of hopeite Zn3Fe(PO4)2.4H2O and phosphophyllite Zn2Fe(PO4)2.4H2O. The microstructural changes of the phosphate coating, as a function of phosphating time, were evaluated by scanning elec- tron microscopy. Four-ball friction experiments reveal that hydroxylamine sulfate instead of sodium nitrite can effectively reduce the friction coefficient of lubricated phosphating coat- ing. Therefore, it may be expected that HAS will be widely used as a fast and ECO-friendly accelerator in phosphate industry.展开更多
基金This work was supported by the Bengbu Yucheng New Materials Science and Technology Ltd. (No.2012QTXM0375) and the Natural Science Foundation of Anhui Province (No.1208085QE99).
文摘Hydroxylamine sulfate (HAS) and sodium nitrite are used as the accelerators for zinc phos- phate coating on high carbon steel. Phase evolution of phosphate coating was investigated by X-ray diffraction. It is found that the phosphating coatings are mainly composed of hopeite Zn3Fe(PO4)2.4H2O and phosphophyllite Zn2Fe(PO4)2.4H2O. The microstructural changes of the phosphate coating, as a function of phosphating time, were evaluated by scanning elec- tron microscopy. Four-ball friction experiments reveal that hydroxylamine sulfate instead of sodium nitrite can effectively reduce the friction coefficient of lubricated phosphating coat- ing. Therefore, it may be expected that HAS will be widely used as a fast and ECO-friendly accelerator in phosphate industry.