Cytochrome P450 enzymes catalyze diverse oxidative transformations at the expense of reduced nicotinamide adenine dinucleotide phosphate(NADPH),however,their applications remain limited largely because NADPH is cost-p...Cytochrome P450 enzymes catalyze diverse oxidative transformations at the expense of reduced nicotinamide adenine dinucleotide phosphate(NADPH),however,their applications remain limited largely because NADPH is cost-prohibitive for biocatalysis at scale yet tightly regulated in host cells.A highly challenging task for P450 catalysis has been to develop an alternative and biocompatible electrondonating system.Here we engineered P450 BM3 to favor reduced nicotinamide cytosine dinucleotide(NCDH)and created non-natural cofactor-dependent P450 catalysis.Two outstanding mutants were identified with over 640-fold NCDH preference improvement and good catalytic efficiencies of over15,000 M^(-1)s^(-1)for the oxidation of the fatty acid probe 12-(para-nitrophenoxy)-dodecanoate.Molecular docking analysis indicated that these mutants bear a compacted cofactor entrance.Upon fusing with an NCD-dependent formate dehydrogenase,fused proteins functioned as NCDH-specific P450catalysts by using formate as the electron donor.Importantly,these mutants and fusions catalyzed NCDH-dependent hydroxylation of fatty acids with similar chain length preference to those by natural P450 BM3 in the presence of NADPH and also similar regioselectivity for subterminal hydroxylation of lauric acid.As P450 BM3 and its variants are catalytically powerful to take diverse substrates and convey different reaction paths,our results offer an exciting opportunity to devise advanced cell factories that convey oxidative biocatalysis with an orthogonal reducing power supply system.展开更多
Hydrous Cr-bearing uvarovite garnets are rare in natural occurrences and belong to the ugrandite series and exist in binary solid solutions with grossular and andradite garnets. Here, we report the occurrence of hydro...Hydrous Cr-bearing uvarovite garnets are rare in natural occurrences and belong to the ugrandite series and exist in binary solid solutions with grossular and andradite garnets. Here, we report the occurrence of hydrous uvarovite garnet having Cr_(2)O_(3) upto 19.66 wt% and CaO of 32.12–35.14 wt% in the serpentinized mantle peridotites of Naga Hills Ophiolite(NHO), India. They occur in association with low-Cr diopsides. They are enriched in LILE(Ba, Sr), LREEs, with fractionating LREE-MREE [avg.(La/Sm)_(N) = 2.16] with flat MREE/HREE patterns [avg.(Sm/Yb)_(N) = 0.95]. Raman spectra indicate the presence of hydroxyl(OH^(–)) peaks from 3500 to 3700 cm^(-1). Relative abundances in fluid mobile elements and their close association with clinopyroxenes are suggestive of the formation of uvarovite garnets through low temperature metasomatic alteration of low-Cr diopsides by hydrothermal slab fluids. The high LREE concentration and absence of Eu anomaly in the garnet further attest to alkaline nature of the transporting slab dehydrated fluid rather the involvement of low-p H solution. The chemical characteristics of the hydroxyl bearing uvarovite hosted by the mantle peridotite of NHO deviate from the classical features of uvarovite garnet, and their origin is attributed to the fluid-induced metasomatism of the sub arc mantle wedge in a suprasubduction zone regime.展开更多
Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of...Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of hydrogen-substituted graphdiyne(HsGDY),and coordinated with OH as an Ir atomic catalyst(Ir_(1)-N-HsGDY).The electron structures,especially the d-band center of Ir atom,are optimized by these specific coordination atoms.Thus,the as-synthesized Ir_(1)-N-HsGDY exhibits excellent electrocatalytic performances for oxygen reduction and hydrogen evolution reactions in both acidic and alkaline media.Benefiting from the unique structure of HsGDY,IrN_(2)(OH)_(3) has been developed and demonstrated to act as the active site in these electrochemical reactions.All those indicate the fresh role of the sp-N in graphdiyne in producing a new anchor way and contributing to promote the electrocatalytic activity,showing a new strategy to design novel electrochemical catalysts.展开更多
Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species for...Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species formed on Au sites diffuses to the Ti sites to form the Ti-hydroperoxo intermedi-ates and contributes to the formation of propylene oxide(PO).In principle,thermal treatment will significantly affect the chemical and physical structures of Ti-containing materials.Consequently,the synergy between tailored Ti sites with different surface properties and Au sites is highly expected to enhance the catalytic performance for the reaction.Herein,we systematically studied the intrinsic effects of different microenvironments around Ti sites on the PO adsorption/desorption and conversion,and then effectively improved the catalytic performance by tailoring the number of surface hydroxyl groups.The Ti^(Ⅵ) material with fewer hydroxyls stimulates a remarkable enhancement in PO selectivity and H_(2) efficiency compared to the Ti^(Ⅵ) material that possessed more hydroxyls,offering a 7-fold and 4-fold increase,respectively.As expected,the Ti^(Ⅵ+Ⅳ) and Ti^(Ⅳ) materials also exhibit a similar phenomenon to the Ti^(Ⅵ) materials through the same thermal treatment,which strongly supports that the Ti sites microenvironment is an important factor in suppressing PO con-version and enhancing catalytic performance.These insights could provide guidance for the rational preparation and optimization of Ti-containing materials synergizing with Au catalysts for propylene epoxidation.展开更多
基金supported by the National Key R&D Program of China(2019YFA0904900)the National Natural Science Foundation of China(21877112,21837002,21721004)。
文摘Cytochrome P450 enzymes catalyze diverse oxidative transformations at the expense of reduced nicotinamide adenine dinucleotide phosphate(NADPH),however,their applications remain limited largely because NADPH is cost-prohibitive for biocatalysis at scale yet tightly regulated in host cells.A highly challenging task for P450 catalysis has been to develop an alternative and biocompatible electrondonating system.Here we engineered P450 BM3 to favor reduced nicotinamide cytosine dinucleotide(NCDH)and created non-natural cofactor-dependent P450 catalysis.Two outstanding mutants were identified with over 640-fold NCDH preference improvement and good catalytic efficiencies of over15,000 M^(-1)s^(-1)for the oxidation of the fatty acid probe 12-(para-nitrophenoxy)-dodecanoate.Molecular docking analysis indicated that these mutants bear a compacted cofactor entrance.Upon fusing with an NCD-dependent formate dehydrogenase,fused proteins functioned as NCDH-specific P450catalysts by using formate as the electron donor.Importantly,these mutants and fusions catalyzed NCDH-dependent hydroxylation of fatty acids with similar chain length preference to those by natural P450 BM3 in the presence of NADPH and also similar regioselectivity for subterminal hydroxylation of lauric acid.As P450 BM3 and its variants are catalytically powerful to take diverse substrates and convey different reaction paths,our results offer an exciting opportunity to devise advanced cell factories that convey oxidative biocatalysis with an orthogonal reducing power supply system.
基金the funding received from the Science and Engineering Research Board (SERB), Govt. of India under GAP 3291funded by Ministry of Earth Science (MoES) with project reference number Mo ES/ P.O. (Seismic) 8 (09)-Geochron/2012。
文摘Hydrous Cr-bearing uvarovite garnets are rare in natural occurrences and belong to the ugrandite series and exist in binary solid solutions with grossular and andradite garnets. Here, we report the occurrence of hydrous uvarovite garnet having Cr_(2)O_(3) upto 19.66 wt% and CaO of 32.12–35.14 wt% in the serpentinized mantle peridotites of Naga Hills Ophiolite(NHO), India. They occur in association with low-Cr diopsides. They are enriched in LILE(Ba, Sr), LREEs, with fractionating LREE-MREE [avg.(La/Sm)_(N) = 2.16] with flat MREE/HREE patterns [avg.(Sm/Yb)_(N) = 0.95]. Raman spectra indicate the presence of hydroxyl(OH^(–)) peaks from 3500 to 3700 cm^(-1). Relative abundances in fluid mobile elements and their close association with clinopyroxenes are suggestive of the formation of uvarovite garnets through low temperature metasomatic alteration of low-Cr diopsides by hydrothermal slab fluids. The high LREE concentration and absence of Eu anomaly in the garnet further attest to alkaline nature of the transporting slab dehydrated fluid rather the involvement of low-p H solution. The chemical characteristics of the hydroxyl bearing uvarovite hosted by the mantle peridotite of NHO deviate from the classical features of uvarovite garnet, and their origin is attributed to the fluid-induced metasomatism of the sub arc mantle wedge in a suprasubduction zone regime.
基金supported by the National Natural Science Foundation of China(22172090,21790051)the National Key Research and Development Project of China(2022YFA1204500,2022YFA1204501)+2 种基金the Natural Science Foundation of Shan-dong Province(ZR2021MB015)the Open Funds of the State Key Laboratory of Electroanalytical Chemistry(SKLEAC202202)the Young Scholars Program of Shandong University。
文摘Tuning the coordination atoms of central metal is an effective means to improve the electrocatalytic activity of atomic catalysts.Herein,iridium(Ir) is proposed to be asymmetrically anchored by sp-N and pyridinic N of hydrogen-substituted graphdiyne(HsGDY),and coordinated with OH as an Ir atomic catalyst(Ir_(1)-N-HsGDY).The electron structures,especially the d-band center of Ir atom,are optimized by these specific coordination atoms.Thus,the as-synthesized Ir_(1)-N-HsGDY exhibits excellent electrocatalytic performances for oxygen reduction and hydrogen evolution reactions in both acidic and alkaline media.Benefiting from the unique structure of HsGDY,IrN_(2)(OH)_(3) has been developed and demonstrated to act as the active site in these electrochemical reactions.All those indicate the fresh role of the sp-N in graphdiyne in producing a new anchor way and contributing to promote the electrocatalytic activity,showing a new strategy to design novel electrochemical catalysts.
文摘Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species formed on Au sites diffuses to the Ti sites to form the Ti-hydroperoxo intermedi-ates and contributes to the formation of propylene oxide(PO).In principle,thermal treatment will significantly affect the chemical and physical structures of Ti-containing materials.Consequently,the synergy between tailored Ti sites with different surface properties and Au sites is highly expected to enhance the catalytic performance for the reaction.Herein,we systematically studied the intrinsic effects of different microenvironments around Ti sites on the PO adsorption/desorption and conversion,and then effectively improved the catalytic performance by tailoring the number of surface hydroxyl groups.The Ti^(Ⅵ) material with fewer hydroxyls stimulates a remarkable enhancement in PO selectivity and H_(2) efficiency compared to the Ti^(Ⅵ) material that possessed more hydroxyls,offering a 7-fold and 4-fold increase,respectively.As expected,the Ti^(Ⅵ+Ⅳ) and Ti^(Ⅳ) materials also exhibit a similar phenomenon to the Ti^(Ⅵ) materials through the same thermal treatment,which strongly supports that the Ti sites microenvironment is an important factor in suppressing PO con-version and enhancing catalytic performance.These insights could provide guidance for the rational preparation and optimization of Ti-containing materials synergizing with Au catalysts for propylene epoxidation.