期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hydration Heat Effect of Cement Pastes Modified with Hydroxypropyl Methyl Cellulose Ether and Expanded Perlite 被引量:1
1
作者 苏雷 MA Baoguo +2 位作者 JIAN Shouwei ZHAO Zhiguang LIU Min 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期122-126,共5页
Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FT... Hydration heat effect of cement pastes and mechanism of hydroxypropyl methyl cellulose ether (HPMC) and expanded perlite in cement pastes were studied by means of hydration exothermic rate, hydration heat amount, FTIR and TG-DTG. The results show that HPMC can significantly delay the hydration induction period and acceleration period of cement pastes. As mixing amount increased, hydration induction period of cement pastes enlarged and accelerated period gradually went back. At the same time, the amount of hydration heat gradually decreased. Expanded perlite had worse delay effects and less change of hydration heat amount of cement pastes than HPMC. HPMC changed the structure of C-S-H during cement hydration. The more amount of HPMC, the more obvious effect. However, EXP had little influence on the structure of C-S-H. At the same age, the content of Ca (OH)2 in cement pastes gradually decreased as the mixing amount increase of HPMC and expanded perlite, and had better delay effect than that single-doped with HPMC or expanded perlite when HPMC and expanded nerlite were both dooed in cement pastes. 展开更多
关键词 hydroxypropyl methyl cellulose ether expanded perlite cement pastes hydration heat hydrationprocess
下载PDF
Regulating the Function of Nanocomposite Made from Hydroxypropyl Methyl Cellulose with Bacterial Cellulose Nanocrystal 被引量:2
2
作者 AiJing Zhou YangYang Peng +1 位作者 ShiYu Fu Hao Liu 《Paper And Biomaterials》 2016年第2期38-44,共7页
Hydroxypropyl methyl cellulose(HPMC)-based hybrid nanocomposites reinforced with bacterial cellulose nanocrystals(BCNC) were prepared and characterized.The HPMC nanocomposites exhibited good thermal stability,with a t... Hydroxypropyl methyl cellulose(HPMC)-based hybrid nanocomposites reinforced with bacterial cellulose nanocrystals(BCNC) were prepared and characterized.The HPMC nanocomposites exhibited good thermal stability,with a thermogravimetric peak temperature of around 346℃.The addition of BCNC did not significantly affect the thermal degradation temperature or improve the transparency of HPMC nanocomposites.However,the addition of BCNC favorably affected the light scattering properties of the nanocomposites and enhanced mechanical properties such as tensile stress and Young's modulus from 65 MPa and 1.5 GPa up to 139 MPa and 3.2 GPa,respectively.The oxygen permeability of the HPMC nanocomposites also increased with increase in the amount of BCNC added. 展开更多
关键词 hydroxypropyl methyl cellulose bacterial cellulose nanocrystal NANOCOMPOSITE
下载PDF
Preparation and Swelling Kinetic Analysis of Poly (HPMC-co-AA-co-AM) Super Absorbent Resin
3
作者 马砺 WANG Xin +2 位作者 LIU Xixi WEI Gaoming GUO Ying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期790-799,共10页
Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,p... Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model. 展开更多
关键词 super absorbent resin swelling kinetics water absorption graft copolymerization hydroxypropyl methyl cellulose
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部