期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on simulation of gun muzzle flow field empowered by artificial intelligence 被引量:1
1
作者 Mengdi Zhou Linfang Qian +3 位作者 Congyong Cao Guangsong Chen Jin Kong Ming-hao Tong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期196-208,共13页
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie... Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions. 展开更多
关键词 Muzzle flow field Artificial intelligence Deep learning data-physical fusion driven Shock wave
下载PDF
适用于配电网三相优化潮流的数据物理融合驱动线性化方法 被引量:10
2
作者 巨云涛 杨明友 吴文传 《电力系统自动化》 EI CSCD 北大核心 2022年第13期43-52,共10页
现有配电网三相潮流线性化模型在重载时精度下降较明显,限制了其应用。为此,提出了一种适用于三相优化潮流的改进型数据物理融合驱动线性化方法。首先,基于配电网物理特性得到三相线性潮流模型。然后,采用偏最小二乘回归的数据驱动方法... 现有配电网三相潮流线性化模型在重载时精度下降较明显,限制了其应用。为此,提出了一种适用于三相优化潮流的改进型数据物理融合驱动线性化方法。首先,基于配电网物理特性得到三相线性潮流模型。然后,采用偏最小二乘回归的数据驱动方法获得线性化误差模型,对物理驱动模型进行修正。与完全数据驱动型方法相比,三相线性潮流模型保留了线路信息,可在优化潮流中用于描述支路约束。与完全物理驱动模型相比,三相线性潮流模型充分利用数据驱动的优化拟合能力来获得线性化误差与节点负荷之间的线性关系。因为在误差修正项中包含更多维的全局信息,所以线性化模型的精度得到提高,保证了重载时所提方法的精度仍足够高。所提方法具有更好的适用性,能够处理各种连接方式的三相变压器和负荷模型以及考虑相间耦合的分布式电源模型。基于IEEE标准算例,将所提方法与其他可用于优化潮流的线性化方法进行对比分析,结果表明所提方法在系统重载时精度依然很高。 展开更多
关键词 配电网 数据物理融合驱动 三相潮流 线性化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部