The Knowledge Graph(KGs)have profoundly impacted many researchfields.However,there is a problem of low data integrity in KGs.The binary-relational knowledge graph is more common in KGs but is limited by less informatio...The Knowledge Graph(KGs)have profoundly impacted many researchfields.However,there is a problem of low data integrity in KGs.The binary-relational knowledge graph is more common in KGs but is limited by less information.It often has less content to use when predicting missing entities(relations).The hyper-relational knowledge graph is another form of KGs,which introduces much additional information(qualifiers)based on the main triple.The hyper-relational knowledge graph can effectively improve the accuracy of pre-dicting missing entities(relations).The existing hyper-relational link prediction methods only consider the overall perspective when dealing with qualifiers and calculate the score function by combining the qualifiers with the main triple.How-ever,these methods overlook the inherent characteristics of entities and relations.This paper proposes a novel Local and Global Hyper-relation Aggregation Embed-ding for Link Prediction(LGHAE).LGHAE can capture the semantic features of hyper-relational data from local and global perspectives.To fully utilize local and global features,Hyper-InteractE,as a new decoder,is designed to predict missing entities to fully utilize local and global features.We validated the feasibility of LGHAE by comparing it with state-of-the-art models on public datasets.展开更多
文摘The Knowledge Graph(KGs)have profoundly impacted many researchfields.However,there is a problem of low data integrity in KGs.The binary-relational knowledge graph is more common in KGs but is limited by less information.It often has less content to use when predicting missing entities(relations).The hyper-relational knowledge graph is another form of KGs,which introduces much additional information(qualifiers)based on the main triple.The hyper-relational knowledge graph can effectively improve the accuracy of pre-dicting missing entities(relations).The existing hyper-relational link prediction methods only consider the overall perspective when dealing with qualifiers and calculate the score function by combining the qualifiers with the main triple.How-ever,these methods overlook the inherent characteristics of entities and relations.This paper proposes a novel Local and Global Hyper-relation Aggregation Embed-ding for Link Prediction(LGHAE).LGHAE can capture the semantic features of hyper-relational data from local and global perspectives.To fully utilize local and global features,Hyper-InteractE,as a new decoder,is designed to predict missing entities to fully utilize local and global features.We validated the feasibility of LGHAE by comparing it with state-of-the-art models on public datasets.