Zn accumulation and subcellular distribution in leaves of the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance were studied using radiotracer and gradient centrifugati...Zn accumulation and subcellular distribution in leaves of the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance were studied using radiotracer and gradient centrifugation techniques. Leaf Zn accumulation in the HE of S. alfredii was 18.5-26.7 times greater than that in the NHE when the plants were grown at 1-500μmol Zn L-1. Leaf section uptake of 65Zn was highly dependent on external Zn levels. Greater 65Zn uptake in HE was noted only at external Zn levels 〉 100μmol L-1. Zinc subcellular distribution in the leaves of the two ecotypes of S. alfredii was: cell wall 〉 soluble fraction 〉 cell organelle. However, more Zn was distributed to the leaf cell wall and soluble fractions for HE than for NHE. In the leaf of HE, 91%-94% of the Zn was found in the cell walls and the soluble fraction and only 6%-9% Zn was distributed in the cell organelle fraction. For NHE, about 20%-26% Zn was recovered in the cell organelle fraction. In stems, Zn distribution to the ceil wail fraction was approximately two fold greater in the HE than that in the NHE. For the hyperaccumulating ecotype of S. alfredii, the cell wall and the vacuole played a very important role in Zn tolerance and hyperaccumulation.展开更多
Commelina communis L. growing over some new copper mining wastelands at Bijiashan, Tongling City of Anhui Province, China, was found to be a copper hyperaccumulator. Its copper concentrations were 2707-6159 (4439±...Commelina communis L. growing over some new copper mining wastelands at Bijiashan, Tongling City of Anhui Province, China, was found to be a copper hyperaccumulator. Its copper concentrations were 2707-6159 (4439±2434) mg kg-1, 369-831 (731±142) mg kg-1, and 429-587 (547±57) mg kg-1, respectively, in the roots, stems, and leaves. The soils supporting the growth of the species had a copper concentration ranging from 4620 to 5020 mg kg-1 and averaging 4835±262 mg kg-1, suggesting that the species could not only grow on heavily copper-contaminated soils but also accumulate extraordinarily high concentration of copper. Thus, it shows great potential in the phytoremediation of copper-contaminated soils,the restoration of mined land, geochemical prospecting, and the study of environmental pollution changes.展开更多
A brief introduce to environmental and ecological characteristics, hyperaccumulators of rare earth elements (REEs), as well as the scientific significance of REE hyperaccumulators were presented. Based on this intro...A brief introduce to environmental and ecological characteristics, hyperaccumulators of rare earth elements (REEs), as well as the scientific significance of REE hyperaccumulators were presented. Based on this introduce, the achievements in REE hyperaccumulator research, which were : ( 1 ) The species and regional distribution of REE hyperaccumulators,展开更多
Leaching of heavy metals from Sedum alfredii Hance biomass was studied with ammonia-ammonium chloride solution as leaching agent.The research was carried out in two phases:1)a leaching study to determine the zinc extr...Leaching of heavy metals from Sedum alfredii Hance biomass was studied with ammonia-ammonium chloride solution as leaching agent.The research was carried out in two phases:1)a leaching study to determine the zinc extraction efficiency of this leaching agent,and 2)a thermodynamic analysis to identify the likely reactions and stable Zn(Ⅱ)species formed in the leaching systems.Taguchi orthogonal experiment,with four variable parameters,leaching temperature,molar ratio of NH4Cl to NH3,leaching time and solid-to-liquid(L/S)ratio,and each at three levels,was used to optimize the experiment parameters by the analysis of variances.The results indicate that leaching temperature has the most dominant effect on metal extraction performance,followed by molar ratio of NH4Cl to NH3,solid-to-liquid ratio and leaching time.The optimum condition was obtained as follows:temperature of 60℃,molecular ratio of NH4Cl to NH3 of 0.6,leaching time of 2 h and solid-to-liquid ratio of 5-1.The total zinc leaching efficiency under optimum conditions reaches 97.95%.The thermodynamic study indicates that the dominant species produced by the leaching process should be the soluble Zn(NH3)4 2+.展开更多
Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase...Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase (CAT); superoxide dismutase (SOD); peroxidase (POD)) in the leaf were determined when S. alfredii was treated for 15 d with various CdC12 concentrations ranging from 0 to 800 μmol/L. The results showed that the production rate of 2',7'-dichlorofluorescein (DCF), which is an indicator of ROS level, reached up to the maximum at 400 μmol/L CdCl2 and then declined with the increase of CdCl2 concentration, while MDA accumulation tended to increase. CAT activity was significantly inhibited at all tested CdCl2 concentrations and SOD activity was sharply suppressed at 800 μmol/L CdCl2. However, the enhancement of POD activity was observed when CdCl2 concentration was higher than 400 μmol/L. In addition, its activity increased when treated with 600 μmol/L CdCl2 for more than 5 d. When sodium benzoate, a free radical scavenger, was added, S. alfredii was a little more sensitive to Cd toxicity than that exposed to Cd alone, and the Cd accumulation tended to decline with the increase of sodium benzoate concentration. It came to the conclusions that POD played an important role during Cd hyperaccumulation, and the accumulation of ROS induced by Cd treatment might be involved in Cd hyperaccumulation.展开更多
Neptunia amplexicaulis is an herbaceous legume endemic to the Richmond area in central Queensland,Australia and is one of the strongest known Selenium hyperaccumulators on earth,showing significant potential to be uti...Neptunia amplexicaulis is an herbaceous legume endemic to the Richmond area in central Queensland,Australia and is one of the strongest known Selenium hyperaccumulators on earth,showing significant potential to be utilised in Se phytoextraction applications.Here a protocol was established for in vitro micropropagation of Se hyperaccumula-tor N.amplexicaulis using nodal segments from in vitro-germinated seedlings.Shoot multiplication was achieved on Murashige and Skoog(MS)basal media supplemented with various concentrations of 6-Benzylaminopurine(BA)(1.0,2.0,3.0 mg L^(−1))alone or in combination with low levels of Naphthaleneacetic acid(NAA)(0.1,0.2,0.3 mg L^(−1)),with 2.0 mg L^(−1) BA+0.2 mg L^(−1) NAA found to be most effective.Elongated shoots were rooted in vitro using NAA,with highest root induction rate of 30%observed at 0.2 mg L^(−1) NAA.About 95%of the in vitro rooted shoots survived acclimatization.Clonally propagated plantlets were dosed with selenate/selenite solution and assessed for Se tissue concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy(ICP-AES)and found to retain their ability to hyperaccumulate.The protocol developed for this study has potential to be optimised for generating clonal plants of N.amplexicaulis for use in research and phytoextraction industry applications.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 20277035)the National Key Basic Research Program (973 Program) of China (No. 2002CB410804).
文摘Zn accumulation and subcellular distribution in leaves of the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance were studied using radiotracer and gradient centrifugation techniques. Leaf Zn accumulation in the HE of S. alfredii was 18.5-26.7 times greater than that in the NHE when the plants were grown at 1-500μmol Zn L-1. Leaf section uptake of 65Zn was highly dependent on external Zn levels. Greater 65Zn uptake in HE was noted only at external Zn levels 〉 100μmol L-1. Zinc subcellular distribution in the leaves of the two ecotypes of S. alfredii was: cell wall 〉 soluble fraction 〉 cell organelle. However, more Zn was distributed to the leaf cell wall and soluble fractions for HE than for NHE. In the leaf of HE, 91%-94% of the Zn was found in the cell walls and the soluble fraction and only 6%-9% Zn was distributed in the cell organelle fraction. For NHE, about 20%-26% Zn was recovered in the cell organelle fraction. In stems, Zn distribution to the ceil wail fraction was approximately two fold greater in the HE than that in the NHE. For the hyperaccumulating ecotype of S. alfredii, the cell wall and the vacuole played a very important role in Zn tolerance and hyperaccumulation.
文摘Commelina communis L. growing over some new copper mining wastelands at Bijiashan, Tongling City of Anhui Province, China, was found to be a copper hyperaccumulator. Its copper concentrations were 2707-6159 (4439±2434) mg kg-1, 369-831 (731±142) mg kg-1, and 429-587 (547±57) mg kg-1, respectively, in the roots, stems, and leaves. The soils supporting the growth of the species had a copper concentration ranging from 4620 to 5020 mg kg-1 and averaging 4835±262 mg kg-1, suggesting that the species could not only grow on heavily copper-contaminated soils but also accumulate extraordinarily high concentration of copper. Thus, it shows great potential in the phytoremediation of copper-contaminated soils,the restoration of mined land, geochemical prospecting, and the study of environmental pollution changes.
文摘A brief introduce to environmental and ecological characteristics, hyperaccumulators of rare earth elements (REEs), as well as the scientific significance of REE hyperaccumulators were presented. Based on this introduce, the achievements in REE hyperaccumulator research, which were : ( 1 ) The species and regional distribution of REE hyperaccumulators,
基金Project(KY20080577000002)supported by the Hi-tech Research and Development Program of ChinaProject(20080431028)supported by China Postdoctoral Science FoundationProject(50804056)supported by the National Natural Science Foundation of China
文摘Leaching of heavy metals from Sedum alfredii Hance biomass was studied with ammonia-ammonium chloride solution as leaching agent.The research was carried out in two phases:1)a leaching study to determine the zinc extraction efficiency of this leaching agent,and 2)a thermodynamic analysis to identify the likely reactions and stable Zn(Ⅱ)species formed in the leaching systems.Taguchi orthogonal experiment,with four variable parameters,leaching temperature,molar ratio of NH4Cl to NH3,leaching time and solid-to-liquid(L/S)ratio,and each at three levels,was used to optimize the experiment parameters by the analysis of variances.The results indicate that leaching temperature has the most dominant effect on metal extraction performance,followed by molar ratio of NH4Cl to NH3,solid-to-liquid ratio and leaching time.The optimum condition was obtained as follows:temperature of 60℃,molecular ratio of NH4Cl to NH3 of 0.6,leaching time of 2 h and solid-to-liquid ratio of 5-1.The total zinc leaching efficiency under optimum conditions reaches 97.95%.The thermodynamic study indicates that the dominant species produced by the leaching process should be the soluble Zn(NH3)4 2+.
基金Project supported by the Wuhan Chenguang Project for Youth Scholar(No.20045006071-24)"211 Project"of Educational Ministry of China
文摘Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase (CAT); superoxide dismutase (SOD); peroxidase (POD)) in the leaf were determined when S. alfredii was treated for 15 d with various CdC12 concentrations ranging from 0 to 800 μmol/L. The results showed that the production rate of 2',7'-dichlorofluorescein (DCF), which is an indicator of ROS level, reached up to the maximum at 400 μmol/L CdCl2 and then declined with the increase of CdCl2 concentration, while MDA accumulation tended to increase. CAT activity was significantly inhibited at all tested CdCl2 concentrations and SOD activity was sharply suppressed at 800 μmol/L CdCl2. However, the enhancement of POD activity was observed when CdCl2 concentration was higher than 400 μmol/L. In addition, its activity increased when treated with 600 μmol/L CdCl2 for more than 5 d. When sodium benzoate, a free radical scavenger, was added, S. alfredii was a little more sensitive to Cd toxicity than that exposed to Cd alone, and the Cd accumulation tended to decline with the increase of sodium benzoate concentration. It came to the conclusions that POD played an important role during Cd hyperaccumulation, and the accumulation of ROS induced by Cd treatment might be involved in Cd hyperaccumulation.
文摘Neptunia amplexicaulis is an herbaceous legume endemic to the Richmond area in central Queensland,Australia and is one of the strongest known Selenium hyperaccumulators on earth,showing significant potential to be utilised in Se phytoextraction applications.Here a protocol was established for in vitro micropropagation of Se hyperaccumula-tor N.amplexicaulis using nodal segments from in vitro-germinated seedlings.Shoot multiplication was achieved on Murashige and Skoog(MS)basal media supplemented with various concentrations of 6-Benzylaminopurine(BA)(1.0,2.0,3.0 mg L^(−1))alone or in combination with low levels of Naphthaleneacetic acid(NAA)(0.1,0.2,0.3 mg L^(−1)),with 2.0 mg L^(−1) BA+0.2 mg L^(−1) NAA found to be most effective.Elongated shoots were rooted in vitro using NAA,with highest root induction rate of 30%observed at 0.2 mg L^(−1) NAA.About 95%of the in vitro rooted shoots survived acclimatization.Clonally propagated plantlets were dosed with selenate/selenite solution and assessed for Se tissue concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy(ICP-AES)and found to retain their ability to hyperaccumulate.The protocol developed for this study has potential to be optimised for generating clonal plants of N.amplexicaulis for use in research and phytoextraction industry applications.