We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier...The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.展开更多
The aim of this paper is to prove the well-posedness(existence and uniqueness) of the L p entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with L p...The aim of this paper is to prove the well-posedness(existence and uniqueness) of the L p entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with L p initial value.We use the device of doubling variables and some technical analysis to prove the uniqueness result.Moreover we can prove that the L p entropy solution can be obtained as the limit of solutions of the corresponding regularized equations of nondegenerate parabolic type.展开更多
We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, ...We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, we theoretically explain the importance of the second-order two-scale solution by the error analysis in the pointwise sense. The associated explicit convergence rates are also obtained. Then a second-order two-scale numerical method based on the Newmark scheme is presented to solve the equations. Finally, some numerical examples are used to verify the effectiveness and efficiency of the multiscale numerical algorithm we proposed.展开更多
We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general s...We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general systems under the basic Kawashima- Shizuta type of conditions. The first result is to make precise the secondary waves with subscale structure, revealing the nature of coupling of waves pertaining to different characteristic families. The second result is on the continuous differentiability of the Green's function with respect to a small parameter when the coefficients of the system are smooth functions of that parameter. The results significantly improve previous results obtained by the authors.展开更多
In this article, we prove a general existence theorem for a class of nonlinear degenerate parabolichyperbolic equations. Since the regions of parabolicity and hyperbolicity are coupled in a way that depends on the sol...In this article, we prove a general existence theorem for a class of nonlinear degenerate parabolichyperbolic equations. Since the regions of parabolicity and hyperbolicity are coupled in a way that depends on the solution itself, there is almost no hope of decoupling the regions and then taking into account the parabolic and the hyperbolic features separately. The existence of solutions can be obtained by ?nding the limit of solutions for the regularized equation of strictly parabolic type. We use the energy methods and vanishing viscosity methods to prove the local existence and uniqueness of solution.展开更多
In this paper, we will discuss the asymptotic behaviour for a class of hyperbolic -parabolic type equation with highly oscillatory coefficients arising from the strong-transient heat and mass transfer problems of comp...In this paper, we will discuss the asymptotic behaviour for a class of hyperbolic -parabolic type equation with highly oscillatory coefficients arising from the strong-transient heat and mass transfer problems of composite media. A complete multiscale asymptotic expansion and its rigorous verification will be reported.展开更多
It is proved for parabolic equations that under certain conditions the weak (un-) stable manifolds possess invariant foliations, called strongly (un-) stable foliations. The relevant results on center manifoids are ge...It is proved for parabolic equations that under certain conditions the weak (un-) stable manifolds possess invariant foliations, called strongly (un-) stable foliations. The relevant results on center manifoids are generalized to weak hyperbolic manifolds展开更多
We consider the Cauchy problem εu^″ε + δu′ε + Auε = 0, uε(0) = uo, u′ε(0) = ul, where ε 〉 0, δ 〉 0, H is a Hilbert space, and A is a self-adjoint linear non-negative operator on H with dense domai...We consider the Cauchy problem εu^″ε + δu′ε + Auε = 0, uε(0) = uo, u′ε(0) = ul, where ε 〉 0, δ 〉 0, H is a Hilbert space, and A is a self-adjoint linear non-negative operator on H with dense domain D(A). We study the convergence of (uε) to the solution of the limit problem ,δu' + Au = 0, u(0) = u0. For initial data (u0, u1) ∈ D(A1/2)× H, we prove global-in-time convergence with respect to strong topologies. Moreover, we estimate the convergence rate in the case where (u0, u1)∈ D(A3/2) ∈ D(A1/2), and we show that this regularity requirement is sharp for our estimates. We give also an upper bound for |u′ε(t)| which does not depend on ε.展开更多
Slow motion for scalar Allen-Cahn type equation is a well-known phenomenon,precise motion law for the dynamics of fronts having been established first using the socalled geometric approach inspired from central manifo...Slow motion for scalar Allen-Cahn type equation is a well-known phenomenon,precise motion law for the dynamics of fronts having been established first using the socalled geometric approach inspired from central manifold theory(see the results of Carr and Pego in 1989). In this paper, the authors present an alternate approach to recover the motion law, and extend it to the case of multiple wells. This method is based on the localized energy identity, and is therefore, at least conceptually, simpler to implement. It also allows to handle collisions and rough initial data.展开更多
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
基金The NNSF (99200204) of Liaoning Province, China.
文摘The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.
基金Yachun Li’s research was supported partly by National Natural Science Foundation of China (10571120,10971135)the Program for New Century Excellent Talents of Chinese Ministry of Education (NCET-07-0546)+3 种基金Shanghai Shuguang Project 06SG11Zhigang Wang’s research was supported partly by Shanghai Jiao Tong University Innovation Fund For Postgraduates (AE071202)the University Young Teacher Sciences Foundation of Anhui Province (2010SQRL145)the Quality Project Found of Fuyang Normal College (2010JPKC07)
文摘The aim of this paper is to prove the well-posedness(existence and uniqueness) of the L p entropy solution to the homogeneous Dirichlet problems for the anisotropic degenerate parabolic-hyperbolic equations with L p initial value.We use the device of doubling variables and some technical analysis to prove the uniqueness result.Moreover we can prove that the L p entropy solution can be obtained as the limit of solutions of the corresponding regularized equations of nondegenerate parabolic type.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471262)the National Basic Research Program of China(Grant No.2012CB025904)the State Key Laboratory of Science and Engineering Computing and the Center for High Performance Computing of Northwestern Polytechnical University,China
文摘We study the hyperbolic–parabolic equations with rapidly oscillating coefficients. The formal second-order two-scale asymptotic expansion solutions are constructed by the multiscale asymptotic analysis. In addition, we theoretically explain the importance of the second-order two-scale solution by the error analysis in the pointwise sense. The associated explicit convergence rates are also obtained. Then a second-order two-scale numerical method based on the Newmark scheme is presented to solve the equations. Finally, some numerical examples are used to verify the effectiveness and efficiency of the multiscale numerical algorithm we proposed.
基金The research of the first author was partially supported by NSC Grant 96-2628-M-001-011 and NSF Grant DMS-0709248The research of the second author was partially supported byNSF Grant DMS-0207154
文摘We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general systems under the basic Kawashima- Shizuta type of conditions. The first result is to make precise the secondary waves with subscale structure, revealing the nature of coupling of waves pertaining to different characteristic families. The second result is on the continuous differentiability of the Green's function with respect to a small parameter when the coefficients of the system are smooth functions of that parameter. The results significantly improve previous results obtained by the authors.
基金supported by National Natural Science Foundation of China (Grant Nos. 11631011 and 11626251)
文摘In this article, we prove a general existence theorem for a class of nonlinear degenerate parabolichyperbolic equations. Since the regions of parabolicity and hyperbolicity are coupled in a way that depends on the solution itself, there is almost no hope of decoupling the regions and then taking into account the parabolic and the hyperbolic features separately. The existence of solutions can be obtained by ?nding the limit of solutions for the regularized equation of strictly parabolic type. We use the energy methods and vanishing viscosity methods to prove the local existence and uniqueness of solution.
基金This work is Supported by National Natural Science Foundation of China ( No. 19801006) Special Funds for Major State Basic Research Projects ( No. G2000067102).
文摘In this paper, we will discuss the asymptotic behaviour for a class of hyperbolic -parabolic type equation with highly oscillatory coefficients arising from the strong-transient heat and mass transfer problems of composite media. A complete multiscale asymptotic expansion and its rigorous verification will be reported.
文摘It is proved for parabolic equations that under certain conditions the weak (un-) stable manifolds possess invariant foliations, called strongly (un-) stable foliations. The relevant results on center manifoids are generalized to weak hyperbolic manifolds
文摘We consider the Cauchy problem εu^″ε + δu′ε + Auε = 0, uε(0) = uo, u′ε(0) = ul, where ε 〉 0, δ 〉 0, H is a Hilbert space, and A is a self-adjoint linear non-negative operator on H with dense domain D(A). We study the convergence of (uε) to the solution of the limit problem ,δu' + Au = 0, u(0) = u0. For initial data (u0, u1) ∈ D(A1/2)× H, we prove global-in-time convergence with respect to strong topologies. Moreover, we estimate the convergence rate in the case where (u0, u1)∈ D(A3/2) ∈ D(A1/2), and we show that this regularity requirement is sharp for our estimates. We give also an upper bound for |u′ε(t)| which does not depend on ε.
文摘Slow motion for scalar Allen-Cahn type equation is a well-known phenomenon,precise motion law for the dynamics of fronts having been established first using the socalled geometric approach inspired from central manifold theory(see the results of Carr and Pego in 1989). In this paper, the authors present an alternate approach to recover the motion law, and extend it to the case of multiple wells. This method is based on the localized energy identity, and is therefore, at least conceptually, simpler to implement. It also allows to handle collisions and rough initial data.