期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Dimension by Dimension Finite Volume HWENO Method for Hyperbolic Conservation Laws
1
作者 Feng Zheng Jianxian Qiu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期605-624,共20页
In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy ... In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme. 展开更多
关键词 Finite volume Dimension by dimension HWENO hyperbolic conservation laws
下载PDF
Hyperbolic Conservation Laws,Integral Balance Laws and Regularity of Fluxes
2
作者 Matania Ben-Artzi Jiequan Li 《Communications on Applied Mathematics and Computation》 2024年第4期2048-2063,共16页
Hyperbolic conservation laws arise in the context of continuum physics,and are mathematically presented in differential form and understood in the distributional(weak)sense.The formal application of the Gauss-Green th... Hyperbolic conservation laws arise in the context of continuum physics,and are mathematically presented in differential form and understood in the distributional(weak)sense.The formal application of the Gauss-Green theorem results in integral balance laws,in which the concept of flux plays a central role.This paper addresses the spacetime viewpoint of the flux regularity,providing a rigorous treatment of integral balance laws.The established Lipschitz regularity of fluxes(over time intervals)leads to a consistent flux approximation.Thus,fully discrete finite volume schemes of high order may be consistently justified with reference to the spacetime integral balance laws. 展开更多
关键词 Balance laws hyperbolic conservation laws Finite volume approximations Flux regularity CONSISTENCY
下载PDF
Application of a fourth-order relaxation scheme to hyperbolic systems of conservation laws 被引量:7
3
作者 Jianzhong Chen Zhongke Shi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期84-92,共9页
A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CW... A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments. 展开更多
关键词 hyperbolic systems of conservation laws Relaxation schemes CWENO reconstruction
下载PDF
INTERACTION OF STRONG AND WEAK SINGULARITIES FOR HYPERBOLIC SYSTEM OF CONSERVATION LAWS IN MULTIDIMENSIONAL SPACE
4
作者 陈恕行 《Acta Mathematica Scientia》 SCIE CSCD 1990年第3期298-302,共5页
In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the b... In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the bicharacteristics bearing weak singularities we proved a theorem on regularity propagation across the shock front. 展开更多
关键词 INTERACTION OF STRONG AND WEAK SINGULARITIES FOR hyperbolic system OF conservation lawS IN MULTIDIMENSIONAL SPACE
下载PDF
A local pseudo arc-length method for hyperbolic conservation laws 被引量:7
5
作者 Xing Wang Tian-Bao Ma +1 位作者 Hui-Lan Ren Jian-Guo Ning 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期956-965,共10页
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are ... A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves. 展开更多
关键词 Numerical method Local pseudo arc-length method hyperbolic conservation laws Mesh adaptation
下载PDF
High-order maximum-principle-preserving and positivity-preserving weighted compact nonlinear schemes for hyperbolic conservation laws 被引量:3
6
作者 Lingyan TANG Songhe SONG Hong ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期173-192,共20页
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws... In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes. 展开更多
关键词 hyperbolic conservation law maximum-principle-preserving(MPP) positivity-preserving(PP) weighted compact nonlinear scheme(WCNS) finite difference scheme
下载PDF
New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties
7
作者 Alina Chertock Michael Herty +3 位作者 Arsen S.Iskhakov Safa Janajra Alexander Kurganov Maria Lukacova-Medvid'ova 《Communications on Applied Mathematics and Computation》 EI 2024年第3期2011-2044,共34页
In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume fram... In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume framework and is based on fifth-order weighted essentially non-oscillatory(WENO)interpolations in(multidimensional)random space combined with second-order piecewise linear reconstruction in physical space.Compared with spectral approximations in the random space,the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving high-order accuracy.The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations.In the latter case,the methods are also proven to be well-balanced and positivity-preserving. 展开更多
关键词 hyperbolic conservation and balance laws with uncertainties Finite-volume methods Central-upwind schemes Weighted essentially non-oscillatory(WENO)interpolations
下载PDF
SPECTRAL/HP ELEMENT METHOD WITH HIERARCHICAL RECONSTRUCTION FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS
8
作者 Zhiliang Xu Guang Lin 《Acta Mathematica Scientia》 SCIE CSCD 2009年第6期1737-1748,共12页
The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectra... The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservation laws. An orthogonal spectral basis written in terms of Jacobi polynomials is applied. High computational efficiency is obtained due to such matrix-free algorithm. The formulation is conservative, and essential nomoscillation is enforced by the HR limiter. We show that HR preserves the order of accuracy of the spectral/hp element method for smooth solution problems and generate essentially non-oscillatory solutions profiles for capturing discontinuous solutions without local characteristic decomposition. In addition, we introduce a postprocessing technique to improve HR for limiting high degree numerical solutions. 展开更多
关键词 spectral/hp element method hierarchical reconstruction discontinuous Galerkin hyperbolic conservation laws
下载PDF
MmB DIFFERENCE SCHEMES FOR TWODIMENSIONAL HYPERBOLIC CONSERVATION LAWS
9
作者 ZHENGHua-sheng ZHAONing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第4期253-257,共5页
A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged re... A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged reconstruction and upwind property in the spatial discretization. By using TVD Runge-Kutta time discretization method, the full discrete scheme is obtained and its MmB property is proved. The extension to the two-dimensionalnonlinear hyperbolic conservation law systems is straightforward by using component-wise manner. The main advantage is simple: no Riemann problem is solved, and so field-by-field decomposition is avoided and the complicated computation is reduced. Numerical results of two-dimensional Euler equations of compressible gas dynamics verify the accuracy and robustness of the method. 展开更多
关键词 hyperbolic conservation laws MmB diffe-rence scheme flux splitting cell-averaged reconstruction
下载PDF
On High-Resolution Entropy-Consistent Flux with Slope Limiter for Hyperbolic Conservation Laws
10
作者 Xuan Ren Jianhu Feng +2 位作者 Supei Zheng Xiaohan Cheng Yang Li 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1616-1643,共28页
This paper proposes a new version of the high-resolution entropy-consistent(EC-Limited)flux for hyperbolic conservation laws based on a new minmod-type slope limiter.Firstly,we identify the numerical entropy productio... This paper proposes a new version of the high-resolution entropy-consistent(EC-Limited)flux for hyperbolic conservation laws based on a new minmod-type slope limiter.Firstly,we identify the numerical entropy production,a third-order differential term deduced from the previous work of Ismail and Roe[11].The corresponding dissipation term is added to the original Roe flux to achieve entropy consistency.The new,resultant entropy-consistent(EC)flux has a general and explicit analytical form without any corrective factor,making it easy to compute and a less-expensive method.The inequality constraints are imposed on the standard piece-wise quadratic reconstruction to enforce the pointwise values of bounded-type numerical solutions.We design the new minmod slope limiter as combining two separate limiters for left and right states.We propose the EC-Limited flux by adding this reconstruction data method to the primitive variables rather than to the conservative variables of the EC flux to preserve the equilibrium of the primitive variables.These resulting fluxes are easily applied to general hyperbolic conservation laws while having attractive features:entropy-stable,robust,and non-oscillatory.To illustrate the potential of these proposed fluxes,we show the applications to the Burgers equation and the Euler equations. 展开更多
关键词 hyperbolic conservation laws Entropy production Entropy-consistent(EC)flux Slope limiter High-resolution entropy-consistent(EC-Limited)flux
下载PDF
LARGE TIME STEP GENERALIZATION OF RANDOM CHOICE FINITE DIFFERENCE SCHEME FOR HYPERBOLIC CONSERVATION LAWS
11
作者 Wang Jinghua Inst. of Syst. Sci., Academia Sinica, Beijing, China 《Acta Mathematica Scientia》 SCIE CSCD 1989年第1期33-42,共10页
A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of ... A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition. 展开更多
关键词 LARGE TIME STEP GENERALIZATION OF RANDOM CHOICE FINITE DIFFERENCE SCHEME FOR hyperbolic conservation lawS STEP
下载PDF
A NOTE ON THE RIEMANN PROBLEM TO HYPERBOLIC CONSERVATION LAWS
12
作者 朱长江 徐学文 《Acta Mathematica Scientia》 SCIE CSCD 1998年第S1期1-4,共4页
This paper is a extension of [1], [3]. By the method in [1], the authors prove the global existence of the solutions of the Riemann problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws.
关键词 Nonstrictly hyperbolic conservation laws Riemann problem. weak solution
下载PDF
DECAY OF POSITIVE WAVES OF HYPERBOLIC BALANCE LAWS
13
作者 Cleopatra Christoforou Konstantina Trivisa 《Acta Mathematica Scientia》 SCIE CSCD 2012年第1期352-366,共15页
Historically, decay rates have been used to provide quantitative and quali- tative information on the solutions to hyperbolic conservation laws. Quantitative results include the establishment of convergence rates for ... Historically, decay rates have been used to provide quantitative and quali- tative information on the solutions to hyperbolic conservation laws. Quantitative results include the establishment of convergence rates for approximating procedures and numer- ical schemes. Qualitative results include the establishment of results on uniqueness and regularity as well as the ability to visualize the waves and their evolution in time. This work presents two decay estimates on the positive waves for systems of hyperbolic and gen- uinely nonlinear balance laws satisfying a dissipative mechanism. The result is obtained by employing the continuity of Glimm-type functionals and the method of generalized characteristics [7, 17, 241. 展开更多
关键词 hyperbolic conservation law total variation interaction potential Glimmfunctional spreading of rarefaction wave piecewise genuinely nonlinear nonclassical solution
下载PDF
Regularity of Fluxes in Nonlinear Hyperbolic Balance Laws
14
作者 Matania Ben-Artzi Jiequan Li 《Communications on Applied Mathematics and Computation》 2023年第3期1289-1298,共10页
This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluate... This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluated across domain boundaries over time intervals.The fundamental result in this treatment is the regularity of the flux trace in the multi-dimensional setting.It implies that a weak solution indeed satisfies the balance law.In fact,it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of the boundary.It should be emphasized that the weak solutions considered here need not be entropy solutions.Furthermore,the assumption imposed on the flux f(u)is quite minimal-just that it is locally bounded. 展开更多
关键词 Balance laws hyperbolic conservation laws MULTI-DIMENSIONAL Discontinuous solutions Finite-volume schemes FLUX Trace on boundary
下载PDF
An oscillation-free Hermite WENO scheme for hyperbolic conservation laws
15
作者 Zhuang Zhao Jianxian Qiu 《Science China Mathematics》 SCIE CSCD 2024年第2期431-454,共24页
In this paper, the sixth-order oscillation-free Hermite weighted essentially non-oscillatory (OFHWENO) scheme is proposed for hyperbolic conservation laws on structured meshes, where the zeroth- andfirst-order moments... In this paper, the sixth-order oscillation-free Hermite weighted essentially non-oscillatory (OFHWENO) scheme is proposed for hyperbolic conservation laws on structured meshes, where the zeroth- andfirst-order moments are the variables for the governing equations. The main difference from other HWENOschemes existing in the literature is that we add high-order numerical damping terms in the first-order momentequations to control spurious oscillations for the OF-HWENO scheme. The OF-HWENO scheme not only canachieve the designed optimal numerical order, but also can be easily implemented as we use only one set ofstencils in the reconstruction procedure and the same reconstructed polynomials are applied for the zeroth- andfirst-order moment equations. In order to obtain the adaptive order resolution when facing discontinuities, atransition polynomial is added in the reconstruction, where the associated linear weights can also be any positivenumbers as long as their summation equals one. In addition, the OF-HWENO scheme still keeps compactnessas only immediate neighbor values are needed in the space discretization. Some benchmark numerical tests areperformed to illustrate the high-order accuracy, high resolution and robustness of the proposed scheme. 展开更多
关键词 Hermite WENO scheme hyperbolic conservation laws oscillation-free adaptive order discontinuous Galerkin method
原文传递
ON THE CENTRAL RELAXING SCHEME Ⅱ: SYSTEMS OF HYPERBOLIC CONSERVATION LAWS 被引量:2
16
作者 Hua-zhong Tang (School of Mathematical Sciences, Peking University, Beijing 100871, China) (LSEC,ICMSEC Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, China) 《Journal of Computational Mathematics》 SCIE CSCD 2001年第6期571-582,共12页
This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced... This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced to approximate system of conservation laws in curvilinear coordinates. Based on them, the semi-implicit relaxing schemes are con- structed as in [6, 12] without using any linear or nonlinear Riemann solvers. Numerical experiments for one-dimensional and two-dimensional problems are presented to demon- strate the performance and resolution of the current schemes. 展开更多
关键词 hyperbolic conservation laws The relaxing system The central relaxing schemes The Euler equations.
原文传递
Boundary Layer to a System of Viscous Hyperbolic Conservation Laws
17
作者 Xiao-hong Qin 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第3期523-528,共6页
In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for n × n hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We f... In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for n × n hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method. 展开更多
关键词 Viscous hyperbolic conservation laws boundary layer asymptotic stability
原文传递
Wave Interactions for the Suliciu Relaxation System
18
作者 Bingzhuang Liu Yujin Liu 《Journal of Applied Mathematics and Physics》 2021年第7期1483-1496,共14页
In this paper, we investigate the elementary wave interactions for the Suliciu relaxation system and construct uniquely the solution by the characteristic analysis method in the phase plane. We find that the elementar... In this paper, we investigate the elementary wave interactions for the Suliciu relaxation system and construct uniquely the solution by the characteristic analysis method in the phase plane. We find that the elementary wave interactions have a much simpler structure for the Temple class than the general systems of conservation laws. It is observed that the Riemann solutions of the Suliciu relaxation system are stable under the small perturbation on the Riemann initial data. 展开更多
关键词 hyperbolic conservation laws Wave Interaction Riemann Problem Delta Shock Suliciu Relaxation system
下载PDF
Improved Symmetry Property of High Order Weighted Essentially Non-Oscillatory Finite Difference Schemes for Hyperbolic Conservation Laws 被引量:1
19
作者 Wai Sun Don Peng Li +1 位作者 Kwun Ying Wong Zhen Gao 《Advances in Applied Mathematics and Mechanics》 SCIE 2018年第6期1418-1439,共22页
This study aims to investigate the rapid loss of numerical symmetry for problems with symmetrical initial conditions and boundary conditions when solved by the seventh and higher order nonlinear characteristic-wise we... This study aims to investigate the rapid loss of numerical symmetry for problems with symmetrical initial conditions and boundary conditions when solved by the seventh and higher order nonlinear characteristic-wise weighted essentially non-oscillatory(WENO)finite difference schemes.Using the one-dimensional double rarefaction wave problem and the Sedov blast-wave problems,and the twodimensional Rayleigh-Taylor instability(RTI)problem as examples,we illustrate numerically that the sensitive interaction of the round-off error due to the numerical unstable explicit form of the local lower order smoothness indicators in the nonlinear weights definition,which are often given and used in the literature,and the nonlinearity of the WENO scheme are responsible for the rapid growth of asymmetry of an otherwise symmetric problem.An equivalent but compact and numerical stable compact form of the local lower order smoothness indicators is suggested for delaying the onset of and reducing the magnitude of the symmetry error.The benefits of using the compact form of the local lower order smoothness indicators should also be applicable to non-symmetrical strongly non-linear problems in terms of improved numerical stability,reduced rounding errors and increased computational efficiency. 展开更多
关键词 Weighted essentially non-oscillatory SYMMETRY smoothness indicator hyperbolic conservation laws
原文传递
A Cartesian Embedded Boundary Method for Hyperbolic Conservation Laws 被引量:1
20
作者 Bjorn Sjogreen N.Anders Petersson 《Communications in Computational Physics》 SCIE 2007年第6期1199-1219,共21页
We develop an embedded boundary finite difference technique for solving the compressible two-or three-dimensional Euler equations in complex geometries on a Cartesian grid.The method is second order accurate with an e... We develop an embedded boundary finite difference technique for solving the compressible two-or three-dimensional Euler equations in complex geometries on a Cartesian grid.The method is second order accurate with an explicit time step determined by the grid size away from the boundary.Slope limiters are used on the embedded boundary to avoid non-physical oscillations near shock waves.We show computed examples of supersonic flow past a cylinder and compare with results computed on a body fitted grid.Furthermore,we discuss the implementation of the method for thin geometries,and show computed examples of transonic flow past an airfoil. 展开更多
关键词 Embedded boundary hyperbolic conservation law finite difference scheme shock wave.
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部