In this paper, the mixed initial-boundary value problem for general first order quasi- linear hyperbolic systems with nonlinear boundary conditions in the domain D = {(t, x) | t ≥ 0, x ≥0} is considered. A suffic...In this paper, the mixed initial-boundary value problem for general first order quasi- linear hyperbolic systems with nonlinear boundary conditions in the domain D = {(t, x) | t ≥ 0, x ≥0} is considered. A sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution is given.展开更多
Solutions of quasilinear mixed boundary problems for the some parabolic an elliptic partial differential equations are interpreted as solutions of a kind of backward stochastic differential equations, which are associ...Solutions of quasilinear mixed boundary problems for the some parabolic an elliptic partial differential equations are interpreted as solutions of a kind of backward stochastic differential equations, which are associated with the classical Ito forward stochastic differential equations with reflecting boundary conditions.展开更多
In this paper we study the mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems in the domain D -- {(t, x) I t 〉 O, x 〉 0}. Under the assumption that the source term satisfies the ...In this paper we study the mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems in the domain D -- {(t, x) I t 〉 O, x 〉 0}. Under the assumption that the source term satisfies the matching condition, a sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution is given.展开更多
By means of an equivalent invariant form of boundary conditions, the authors get the exis- tence and uniqueness of semi-global C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems...By means of an equivalent invariant form of boundary conditions, the authors get the exis- tence and uniqueness of semi-global C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems with general nonlinear boundary conditions.展开更多
Under the internal dissipative condition, the Cauchy problem for inhomogeneous quasilinear hyperbolic systems with small initial data admits a unique global C1 solution, which exponentially decays to zero as t →+∞,...Under the internal dissipative condition, the Cauchy problem for inhomogeneous quasilinear hyperbolic systems with small initial data admits a unique global C1 solution, which exponentially decays to zero as t →+∞, while if the coefficient matrix 19 of boundary conditions satisfies the boundary dissipative condition, the mixed initialboundary value problem with small initial data for quasilinear hyperbolic systems with nonlinear terms of at least second order admits a unique global C1 solution, which also exponentially decays to zero as t →+∞. In this paper, under more general conditions, the authors investigate the combined effect of the internal dissipative condition and the boundary dissipative condition, and prove the global existence and exponential decay of the C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems with small initial data. This stability result is applied to a kind of models, and an example is given to show the possible exponential instability if the corresponding conditions are not satisfied.展开更多
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approx...The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.展开更多
Based on the theory of semi-global C 1 solution and the local exact boundary controllability for first-order quasilinear hyperbolic systems,the local exact boundary controllability for a kind of second-order quasiline...Based on the theory of semi-global C 1 solution and the local exact boundary controllability for first-order quasilinear hyperbolic systems,the local exact boundary controllability for a kind of second-order quasilinear hyperbolic systems is obtained by a constructive method.展开更多
In this paper, we consider the mixed initial-boundary value problem for quasilinear hyperbolic systems with nonlinear boundary conditions in a half-unbounded domain {(t, x)|t ≥ 0, x ≥ 0}. Under the assumption tha...In this paper, we consider the mixed initial-boundary value problem for quasilinear hyperbolic systems with nonlinear boundary conditions in a half-unbounded domain {(t, x)|t ≥ 0, x ≥ 0}. Under the assumption that the positive eigenvalues are not all weakly linearly degenerate,we obtain the blow-up phenomenon of the first order derivatives of C^1 solution with small and decaying initial data.We also give precise estimate of the life-span of C^1 solution.展开更多
Based on the theory of semi-global classical solutions to quasilinear hyperbolic systems, the local exact boundary observability for a kind of second-order quasilinear hyperbolic systems is obtained by a constructive ...Based on the theory of semi-global classical solutions to quasilinear hyperbolic systems, the local exact boundary observability for a kind of second-order quasilinear hyperbolic systems is obtained by a constructive method.展开更多
By means of the theory on the semi-global C^1 solution to the mixed initialboundary value problem (IBVP) for first order quasilinear hyperbolic systems, we establish the exact controllability for general nonautonomo...By means of the theory on the semi-global C^1 solution to the mixed initialboundary value problem (IBVP) for first order quasilinear hyperbolic systems, we establish the exact controllability for general nonautonomous first order quasilinear hyperbolic systems with general nonlinear boundary conditions.展开更多
In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilin...In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilinear hyperbolic system to solve this problem. The boundary value condition is set in particular to guarantee the character number condition. By this trick, the theory in quasilinear hyperbolic system can be employed to a large range of the boundary value problem.展开更多
The present paper deals with oblique derivative problems for second order nonlinear equa- tions of mixed type with degenerate hyperbolic curve, which include the Tricomi problem as a special case. Firstly the formulat...The present paper deals with oblique derivative problems for second order nonlinear equa- tions of mixed type with degenerate hyperbolic curve, which include the Tricomi problem as a special case. Firstly the formulation of the problems for the equations is given, next the representation and estimates of solutions for the above problems are obtained, finally the existence of solutions for the problems is proved by the successive iteration of solutions of the equations and the fixed-point princi- ple. In this paper, we use the complex analytic method, namely the new partial derivative notations, elliptic complex functions in the elliptic domain and hyperbolic complex functions in the hyperbolic domain are introduced, such that the second order equations of mixed type with degenerate curve are reduced to the first order mixed complex equations with singular coefficients, and then the advantage of complex analytic method can be applied.展开更多
This article deals with the Riemann-Hilbert boundary value problem for quasilinear mixed (elliptic- hyperbolic) complex equations of first order with degenerate rank 0. Firstly, we give the representation theorem an...This article deals with the Riemann-Hilbert boundary value problem for quasilinear mixed (elliptic- hyperbolic) complex equations of first order with degenerate rank 0. Firstly, we give the representation theorem and prove the uniqueness of solutions for the boundary value problem. Afterwards, by using the method of successive iteration, the existence and estimates of solutions for the boundary value problem are verified. The above problem possesses the important applications to the Tricomi problem of mixed type equations of second order. In this article, the proof of HSlder continuity of a singular double integer is very difficult and interesting as in this Section 4 below.展开更多
文摘In this paper, the mixed initial-boundary value problem for general first order quasi- linear hyperbolic systems with nonlinear boundary conditions in the domain D = {(t, x) | t ≥ 0, x ≥0} is considered. A sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution is given.
文摘Solutions of quasilinear mixed boundary problems for the some parabolic an elliptic partial differential equations are interpreted as solutions of a kind of backward stochastic differential equations, which are associated with the classical Ito forward stochastic differential equations with reflecting boundary conditions.
文摘In this paper we study the mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems in the domain D -- {(t, x) I t 〉 O, x 〉 0}. Under the assumption that the source term satisfies the matching condition, a sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution is given.
基金the Special Funds for Major State Basic Research Projects of China.
文摘By means of an equivalent invariant form of boundary conditions, the authors get the exis- tence and uniqueness of semi-global C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems with general nonlinear boundary conditions.
基金supported by the National Natural Science Foundation of China(Nos.11326159,11401421)the China Postdoctoral Science Foundation(No.2014M560287)the Shanxi Scholarship Council of China(No.2013-045)
文摘Under the internal dissipative condition, the Cauchy problem for inhomogeneous quasilinear hyperbolic systems with small initial data admits a unique global C1 solution, which exponentially decays to zero as t →+∞, while if the coefficient matrix 19 of boundary conditions satisfies the boundary dissipative condition, the mixed initialboundary value problem with small initial data for quasilinear hyperbolic systems with nonlinear terms of at least second order admits a unique global C1 solution, which also exponentially decays to zero as t →+∞. In this paper, under more general conditions, the authors investigate the combined effect of the internal dissipative condition and the boundary dissipative condition, and prove the global existence and exponential decay of the C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems with small initial data. This stability result is applied to a kind of models, and an example is given to show the possible exponential instability if the corresponding conditions are not satisfied.
文摘The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.
基金supported by the Excellent Doctoral Research Foundation for Key Subject of Fudan University (No.EHH1411208)
文摘Based on the theory of semi-global C 1 solution and the local exact boundary controllability for first-order quasilinear hyperbolic systems,the local exact boundary controllability for a kind of second-order quasilinear hyperbolic systems is obtained by a constructive method.
基金This project supported by National Natural Science Foundation of China (10371099).
文摘In this paper, we consider the mixed initial-boundary value problem for quasilinear hyperbolic systems with nonlinear boundary conditions in a half-unbounded domain {(t, x)|t ≥ 0, x ≥ 0}. Under the assumption that the positive eigenvalues are not all weakly linearly degenerate,we obtain the blow-up phenomenon of the first order derivatives of C^1 solution with small and decaying initial data.We also give precise estimate of the life-span of C^1 solution.
基金supported by the National Natural Science Foundation of China(No.11526050)
文摘Based on the theory of semi-global classical solutions to quasilinear hyperbolic systems, the local exact boundary observability for a kind of second-order quasilinear hyperbolic systems is obtained by a constructive method.
基金Project supported by Specialized Research Fund for the Doctoral Program of Higher Education.
文摘By means of the theory on the semi-global C^1 solution to the mixed initialboundary value problem (IBVP) for first order quasilinear hyperbolic systems, we establish the exact controllability for general nonautonomous first order quasilinear hyperbolic systems with general nonlinear boundary conditions.
文摘In this paper, we construct a local supersonic flow in a 3-dimensional axis-symmetry nozzle when a uniform supersonic flow inserts the throat. We apply the local existence theory of boundary value problem for quasilinear hyperbolic system to solve this problem. The boundary value condition is set in particular to guarantee the character number condition. By this trick, the theory in quasilinear hyperbolic system can be employed to a large range of the boundary value problem.
基金Supported by National Natural Science Foundation of China (Grant No. 10971224)
文摘The present paper deals with oblique derivative problems for second order nonlinear equa- tions of mixed type with degenerate hyperbolic curve, which include the Tricomi problem as a special case. Firstly the formulation of the problems for the equations is given, next the representation and estimates of solutions for the above problems are obtained, finally the existence of solutions for the problems is proved by the successive iteration of solutions of the equations and the fixed-point princi- ple. In this paper, we use the complex analytic method, namely the new partial derivative notations, elliptic complex functions in the elliptic domain and hyperbolic complex functions in the hyperbolic domain are introduced, such that the second order equations of mixed type with degenerate curve are reduced to the first order mixed complex equations with singular coefficients, and then the advantage of complex analytic method can be applied.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11021161 and 10928102973 Program of China under Grant No.2011CB80800+2 种基金Chinese Academy of Sciences under Grant No.kjcx-yw-s7project grant of "Center for Research and Applications in Plasma Physics and Pulsed Power Technology,PBCT-Chile-ACT 26"Direcci'on de Programas de Investigaci'on,Universidad de Talca,Chile
文摘This article deals with the Riemann-Hilbert boundary value problem for quasilinear mixed (elliptic- hyperbolic) complex equations of first order with degenerate rank 0. Firstly, we give the representation theorem and prove the uniqueness of solutions for the boundary value problem. Afterwards, by using the method of successive iteration, the existence and estimates of solutions for the boundary value problem are verified. The above problem possesses the important applications to the Tricomi problem of mixed type equations of second order. In this article, the proof of HSlder continuity of a singular double integer is very difficult and interesting as in this Section 4 below.