In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy ...In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.展开更多
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are ...A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CW...A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments.展开更多
Historically, decay rates have been used to provide quantitative and quali- tative information on the solutions to hyperbolic conservation laws. Quantitative results include the establishment of convergence rates for ...Historically, decay rates have been used to provide quantitative and quali- tative information on the solutions to hyperbolic conservation laws. Quantitative results include the establishment of convergence rates for approximating procedures and numer- ical schemes. Qualitative results include the establishment of results on uniqueness and regularity as well as the ability to visualize the waves and their evolution in time. This work presents two decay estimates on the positive waves for systems of hyperbolic and gen- uinely nonlinear balance laws satisfying a dissipative mechanism. The result is obtained by employing the continuity of Glimm-type functionals and the method of generalized characteristics [7, 17, 241.展开更多
The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectra...The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservation laws. An orthogonal spectral basis written in terms of Jacobi polynomials is applied. High computational efficiency is obtained due to such matrix-free algorithm. The formulation is conservative, and essential nomoscillation is enforced by the HR limiter. We show that HR preserves the order of accuracy of the spectral/hp element method for smooth solution problems and generate essentially non-oscillatory solutions profiles for capturing discontinuous solutions without local characteristic decomposition. In addition, we introduce a postprocessing technique to improve HR for limiting high degree numerical solutions.展开更多
A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged re...A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged reconstruction and upwind property in the spatial discretization. By using TVD Runge-Kutta time discretization method, the full discrete scheme is obtained and its MmB property is proved. The extension to the two-dimensionalnonlinear hyperbolic conservation law systems is straightforward by using component-wise manner. The main advantage is simple: no Riemann problem is solved, and so field-by-field decomposition is avoided and the complicated computation is reduced. Numerical results of two-dimensional Euler equations of compressible gas dynamics verify the accuracy and robustness of the method.展开更多
This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluate...This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluated across domain boundaries over time intervals.The fundamental result in this treatment is the regularity of the flux trace in the multi-dimensional setting.It implies that a weak solution indeed satisfies the balance law.In fact,it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of the boundary.It should be emphasized that the weak solutions considered here need not be entropy solutions.Furthermore,the assumption imposed on the flux f(u)is quite minimal-just that it is locally bounded.展开更多
This paper proposes a new version of the high-resolution entropy-consistent(EC-Limited)flux for hyperbolic conservation laws based on a new minmod-type slope limiter.Firstly,we identify the numerical entropy productio...This paper proposes a new version of the high-resolution entropy-consistent(EC-Limited)flux for hyperbolic conservation laws based on a new minmod-type slope limiter.Firstly,we identify the numerical entropy production,a third-order differential term deduced from the previous work of Ismail and Roe[11].The corresponding dissipation term is added to the original Roe flux to achieve entropy consistency.The new,resultant entropy-consistent(EC)flux has a general and explicit analytical form without any corrective factor,making it easy to compute and a less-expensive method.The inequality constraints are imposed on the standard piece-wise quadratic reconstruction to enforce the pointwise values of bounded-type numerical solutions.We design the new minmod slope limiter as combining two separate limiters for left and right states.We propose the EC-Limited flux by adding this reconstruction data method to the primitive variables rather than to the conservative variables of the EC flux to preserve the equilibrium of the primitive variables.These resulting fluxes are easily applied to general hyperbolic conservation laws while having attractive features:entropy-stable,robust,and non-oscillatory.To illustrate the potential of these proposed fluxes,we show the applications to the Burgers equation and the Euler equations.展开更多
This paper is a extension of [1], [3]. By the method in [1], the authors prove the global existence of the solutions of the Riemann problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws.
A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of ...A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.展开更多
In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the b...In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the bicharacteristics bearing weak singularities we proved a theorem on regularity propagation across the shock front.展开更多
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ...Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.展开更多
In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume fram...In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume framework and is based on fifth-order weighted essentially non-oscillatory(WENO)interpolations in(multidimensional)random space combined with second-order piecewise linear reconstruction in physical space.Compared with spectral approximations in the random space,the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving high-order accuracy.The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations.In the latter case,the methods are also proven to be well-balanced and positivity-preserving.展开更多
The aim of the research is to study the propagation of a hydraulic fracture with tortuosity due to contact areas between touching asperities on opposite crack walls. The tortuous fracture is replaced by a model symmet...The aim of the research is to study the propagation of a hydraulic fracture with tortuosity due to contact areas between touching asperities on opposite crack walls. The tortuous fracture is replaced by a model symmetric partially open fracture with a hyperbolic crack law and a modified Reynolds flow law. The normal stress at the crack walls is assumed to be proportional to the half-width of the model fracture. The Lie point symmetry of the nonlinear diffusion equation for the fracture half-width is derived and the general form of the group invariant solution is obtained. It was found that the fluid flux at the fracture entry cannot be prescribed arbitrarily, because it is determined by the group invariant solution and that the exponent n in the modified Reynolds flow power law must lie in the range 2 < <em>n</em> < 5. The boundary value problem is solved numerically using a backward shooting method from the fracture tip, offset by 0 < <em>δ</em> <span style="white-space:nowrap;">≪</span> 1 to avoid singularities, to the fracture entry. The numerical results showed that the tortuosity and the pressure due to the contact regions both have the effect of increasing the fracture length. The spatial gradient of the half-width was found to be singular at the fracture tip for 3 < <em>n</em> < 5, to be finite for the Reynolds flow law <em>n</em> = 3 and to be zero for 2 < <em>n</em> < 3. The thin fluid film approximation breaks down at the fracture tip for 3 < <em>n</em> < 5 while it remains valid for increasingly tortuous fractures with 2 < <em>n</em> < 3. The effect of the touching asperities is to decrease the width averaged fluid velocity. An approximate analytical solution for the half-width, which was found to agree well with the numerical solution, is derived by making the approximation that the width averaged fluid velocity increases linearly with distance along the fracture.展开更多
In this paper, the sixth-order oscillation-free Hermite weighted essentially non-oscillatory (OFHWENO) scheme is proposed for hyperbolic conservation laws on structured meshes, where the zeroth- andfirst-order moments...In this paper, the sixth-order oscillation-free Hermite weighted essentially non-oscillatory (OFHWENO) scheme is proposed for hyperbolic conservation laws on structured meshes, where the zeroth- andfirst-order moments are the variables for the governing equations. The main difference from other HWENOschemes existing in the literature is that we add high-order numerical damping terms in the first-order momentequations to control spurious oscillations for the OF-HWENO scheme. The OF-HWENO scheme not only canachieve the designed optimal numerical order, but also can be easily implemented as we use only one set ofstencils in the reconstruction procedure and the same reconstructed polynomials are applied for the zeroth- andfirst-order moment equations. In order to obtain the adaptive order resolution when facing discontinuities, atransition polynomial is added in the reconstruction, where the associated linear weights can also be any positivenumbers as long as their summation equals one. In addition, the OF-HWENO scheme still keeps compactnessas only immediate neighbor values are needed in the space discretization. Some benchmark numerical tests areperformed to illustrate the high-order accuracy, high resolution and robustness of the proposed scheme.展开更多
In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the init...In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the initial data consist of three pieces of constant states. Furthermore, it can be found that the Riemann solutions are stable with respect to such small perturbations of the initial data in this particular situation by investigating the limits of the solutions as the perturbed parameter ε goes to zero.展开更多
In this paper,a high-order moment-based multi-resolution Hermite weighted essentially non-oscillatory(HWENO)scheme is designed for hyperbolic conservation laws.The main idea of this scheme is derived from our previous...In this paper,a high-order moment-based multi-resolution Hermite weighted essentially non-oscillatory(HWENO)scheme is designed for hyperbolic conservation laws.The main idea of this scheme is derived from our previous work[J.Comput.Phys.,446(2021)110653],in which the integral averages of the function and its first order derivative are used to reconstruct both the function and its first order derivative values at the boundaries.However,in this paper,only the function values at the Gauss-Lobatto points in the one or two dimensional case need to be reconstructed by using the information of the zeroth and first order moments.In addition,an extra modification procedure is used to modify those first order moments in the troubledcells,which leads to an improvement of stability and an enhancement of resolution near discontinuities.To obtain the same order of accuracy,the size of the stencil required by this moment-based multi-resolution HWENO scheme is still the same as the general HWENO scheme and is more compact than the generalWENO scheme.Moreover,the linear weights are not unique and are independent of the node position,and the CFL number can still be 0.6whether for the one or two dimensional case,which has to be 0.2 in the two dimensional case for other HWENO schemes.Extensive numerical examples are given to demonstrate the stability and resolution of such moment-based multi-resolution HWENO scheme.展开更多
Numerous models have been proposed in the literature to include phase change into numerical simulations of two-phase flows.This review paper presents the modeling options that have been taken in order to obtain a mode...Numerous models have been proposed in the literature to include phase change into numerical simulations of two-phase flows.This review paper presents the modeling options that have been taken in order to obtain a model for violent separated flows with application to sloshing wave impacts.A relaxation model based on linear non-equilibrium thermodynamics has been chosen to compute the rate of phase change.The integration in the system of partial differential equations is done through a non-conservative advection term.For each of these modelling choices,some alternative models from the literature are presented and discussed.The theoretical framework for all phase change model(conservation equations and entropy growth)is also summarized.展开更多
This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced...This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced to approximate system of conservation laws in curvilinear coordinates. Based on them, the semi-implicit relaxing schemes are con- structed as in [6, 12] without using any linear or nonlinear Riemann solvers. Numerical experiments for one-dimensional and two-dimensional problems are presented to demon- strate the performance and resolution of the current schemes.展开更多
基金supported by the NSFC grant 12101128supported by the NSFC grant 12071392.
文摘In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.
基金supported by the National Natural Science Foundation of China(11390363 and 11172041)Beijing Higher Education Young Elite Teacher Project(YETP1190)
文摘A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.
基金the National Natural Science Foundation of China (60134010)The English text was polished by Yunming Chen.
文摘A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments.
基金supported by the Start-Up fund from University of Cyprussupported by the National Science Foundation under the grant DMS 1109397
文摘Historically, decay rates have been used to provide quantitative and quali- tative information on the solutions to hyperbolic conservation laws. Quantitative results include the establishment of convergence rates for approximating procedures and numer- ical schemes. Qualitative results include the establishment of results on uniqueness and regularity as well as the ability to visualize the waves and their evolution in time. This work presents two decay estimates on the positive waves for systems of hyperbolic and gen- uinely nonlinear balance laws satisfying a dissipative mechanism. The result is obtained by employing the continuity of Glimm-type functionals and the method of generalized characteristics [7, 17, 241.
基金Research was supported in part by NSF grant DMS-0800612Research was supported by Applied Mathematics program of the US DOE Office of Advanced Scientific Computing ResearchThe Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830
文摘The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservation laws. An orthogonal spectral basis written in terms of Jacobi polynomials is applied. High computational efficiency is obtained due to such matrix-free algorithm. The formulation is conservative, and essential nomoscillation is enforced by the HR limiter. We show that HR preserves the order of accuracy of the spectral/hp element method for smooth solution problems and generate essentially non-oscillatory solutions profiles for capturing discontinuous solutions without local characteristic decomposition. In addition, we introduce a postprocessing technique to improve HR for limiting high degree numerical solutions.
文摘A new class of second order accuracy semidiscrete difference schemes is presented for the two-dimensional nonlinear scalar hyperbolic conservation laws. It is based on flux splitting, piecewise linear cell-averaged reconstruction and upwind property in the spatial discretization. By using TVD Runge-Kutta time discretization method, the full discrete scheme is obtained and its MmB property is proved. The extension to the two-dimensionalnonlinear hyperbolic conservation law systems is straightforward by using component-wise manner. The main advantage is simple: no Riemann problem is solved, and so field-by-field decomposition is avoided and the complicated computation is reduced. Numerical results of two-dimensional Euler equations of compressible gas dynamics verify the accuracy and robustness of the method.
基金the Institute of Applied Physics and Computational Mathematics,Beijing,for the hospitality and support.The second author is supported by the NSFC(Nos.11771054,12072042,91852207)the Sino-German Research Group Project(No.GZ1465)the National Key Project GJXM92579.
文摘This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluated across domain boundaries over time intervals.The fundamental result in this treatment is the regularity of the flux trace in the multi-dimensional setting.It implies that a weak solution indeed satisfies the balance law.In fact,it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of the boundary.It should be emphasized that the weak solutions considered here need not be entropy solutions.Furthermore,the assumption imposed on the flux f(u)is quite minimal-just that it is locally bounded.
基金the National Natural Science Found Project of China through project number 11971075.
文摘This paper proposes a new version of the high-resolution entropy-consistent(EC-Limited)flux for hyperbolic conservation laws based on a new minmod-type slope limiter.Firstly,we identify the numerical entropy production,a third-order differential term deduced from the previous work of Ismail and Roe[11].The corresponding dissipation term is added to the original Roe flux to achieve entropy consistency.The new,resultant entropy-consistent(EC)flux has a general and explicit analytical form without any corrective factor,making it easy to compute and a less-expensive method.The inequality constraints are imposed on the standard piece-wise quadratic reconstruction to enforce the pointwise values of bounded-type numerical solutions.We design the new minmod slope limiter as combining two separate limiters for left and right states.We propose the EC-Limited flux by adding this reconstruction data method to the primitive variables rather than to the conservative variables of the EC flux to preserve the equilibrium of the primitive variables.These resulting fluxes are easily applied to general hyperbolic conservation laws while having attractive features:entropy-stable,robust,and non-oscillatory.To illustrate the potential of these proposed fluxes,we show the applications to the Burgers equation and the Euler equations.
文摘This paper is a extension of [1], [3]. By the method in [1], the authors prove the global existence of the solutions of the Riemann problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws.
基金The Project Supported by National Natural Science Foundation of China.
文摘A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.
文摘In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the bicharacteristics bearing weak singularities we proved a theorem on regularity propagation across the shock front.
基金supported by Grant PID2020-117211GB-I00funded by MCIN/AEI/10.13039/501100011033+4 种基金by Grant CIAICO/2021/227funded by the Generalitat Valencianasupported by the Ministerio de Ciencia e Innovacion of Spain(Grant Ref.PID2021-125709OB-C21)funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby the Generalitat Valenciana(CIAICO/2021/224).
文摘Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.
基金supported in part by the NSF grant DMS-2208438.The work of M.Herty was supported in part by the DFG(German Research Foundation)through 20021702/GRK2326,333849990/IRTG-2379,HE5386/18-1,19-2,22-1,23-1under Germany’s Excellence Strategy EXC-2023 Internet of Production 390621612+1 种基金The work of A.Kurganov was supported in part by the NSFC grant 12171226the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design,China(No.2019B030301001).
文摘In this paper,we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations(PDEs)with uncertainties.The new approach is realized in the semi-discrete finite-volume framework and is based on fifth-order weighted essentially non-oscillatory(WENO)interpolations in(multidimensional)random space combined with second-order piecewise linear reconstruction in physical space.Compared with spectral approximations in the random space,the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving high-order accuracy.The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations.In the latter case,the methods are also proven to be well-balanced and positivity-preserving.
文摘The aim of the research is to study the propagation of a hydraulic fracture with tortuosity due to contact areas between touching asperities on opposite crack walls. The tortuous fracture is replaced by a model symmetric partially open fracture with a hyperbolic crack law and a modified Reynolds flow law. The normal stress at the crack walls is assumed to be proportional to the half-width of the model fracture. The Lie point symmetry of the nonlinear diffusion equation for the fracture half-width is derived and the general form of the group invariant solution is obtained. It was found that the fluid flux at the fracture entry cannot be prescribed arbitrarily, because it is determined by the group invariant solution and that the exponent n in the modified Reynolds flow power law must lie in the range 2 < <em>n</em> < 5. The boundary value problem is solved numerically using a backward shooting method from the fracture tip, offset by 0 < <em>δ</em> <span style="white-space:nowrap;">≪</span> 1 to avoid singularities, to the fracture entry. The numerical results showed that the tortuosity and the pressure due to the contact regions both have the effect of increasing the fracture length. The spatial gradient of the half-width was found to be singular at the fracture tip for 3 < <em>n</em> < 5, to be finite for the Reynolds flow law <em>n</em> = 3 and to be zero for 2 < <em>n</em> < 3. The thin fluid film approximation breaks down at the fracture tip for 3 < <em>n</em> < 5 while it remains valid for increasingly tortuous fractures with 2 < <em>n</em> < 3. The effect of the touching asperities is to decrease the width averaged fluid velocity. An approximate analytical solution for the half-width, which was found to agree well with the numerical solution, is derived by making the approximation that the width averaged fluid velocity increases linearly with distance along the fracture.
基金supported by National Key R&D Program of China (Grant No. 2022YFA1004501)supported by the Postdoctoral Science Foundation of China (Grant No. 2021M702145)
文摘In this paper, the sixth-order oscillation-free Hermite weighted essentially non-oscillatory (OFHWENO) scheme is proposed for hyperbolic conservation laws on structured meshes, where the zeroth- andfirst-order moments are the variables for the governing equations. The main difference from other HWENOschemes existing in the literature is that we add high-order numerical damping terms in the first-order momentequations to control spurious oscillations for the OF-HWENO scheme. The OF-HWENO scheme not only canachieve the designed optimal numerical order, but also can be easily implemented as we use only one set ofstencils in the reconstruction procedure and the same reconstructed polynomials are applied for the zeroth- andfirst-order moment equations. In order to obtain the adaptive order resolution when facing discontinuities, atransition polynomial is added in the reconstruction, where the associated linear weights can also be any positivenumbers as long as their summation equals one. In addition, the OF-HWENO scheme still keeps compactnessas only immediate neighbor values are needed in the space discretization. Some benchmark numerical tests areperformed to illustrate the high-order accuracy, high resolution and robustness of the proposed scheme.
基金Sponsored by National Natural Science Foundation of China (10901077)China Postdoctoral Science Foundation (201003504+1 种基金 20090451089)Shandong Provincial Doctoral Foundation (BS2010SF006)
文摘In this note, we consider the interactions of elementary waves for the traffic flow model proposed by Aw and Rascle when the vacuum is not involved. The solutions are obtained constructively and globally when the initial data consist of three pieces of constant states. Furthermore, it can be found that the Riemann solutions are stable with respect to such small perturbations of the initial data in this particular situation by investigating the limits of the solutions as the perturbed parameter ε goes to zero.
基金partly supported by AFOSR grant FA9550-20-1-0055 and NSF grant DMS-2010107partly supported by NSFC grant 12071392.
文摘In this paper,a high-order moment-based multi-resolution Hermite weighted essentially non-oscillatory(HWENO)scheme is designed for hyperbolic conservation laws.The main idea of this scheme is derived from our previous work[J.Comput.Phys.,446(2021)110653],in which the integral averages of the function and its first order derivative are used to reconstruct both the function and its first order derivative values at the boundaries.However,in this paper,only the function values at the Gauss-Lobatto points in the one or two dimensional case need to be reconstructed by using the information of the zeroth and first order moments.In addition,an extra modification procedure is used to modify those first order moments in the troubledcells,which leads to an improvement of stability and an enhancement of resolution near discontinuities.To obtain the same order of accuracy,the size of the stencil required by this moment-based multi-resolution HWENO scheme is still the same as the general HWENO scheme and is more compact than the generalWENO scheme.Moreover,the linear weights are not unique and are independent of the node position,and the CFL number can still be 0.6whether for the one or two dimensional case,which has to be 0.2 in the two dimensional case for other HWENO schemes.Extensive numerical examples are given to demonstrate the stability and resolution of such moment-based multi-resolution HWENO scheme.
文摘Numerous models have been proposed in the literature to include phase change into numerical simulations of two-phase flows.This review paper presents the modeling options that have been taken in order to obtain a model for violent separated flows with application to sloshing wave impacts.A relaxation model based on linear non-equilibrium thermodynamics has been chosen to compute the rate of phase change.The integration in the system of partial differential equations is done through a non-conservative advection term.For each of these modelling choices,some alternative models from the literature are presented and discussed.The theoretical framework for all phase change model(conservation equations and entropy growth)is also summarized.
基金This project supported partly by National Natural Science Foundation of China (No.19901031), the specialFunds for Major State
文摘This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced to approximate system of conservation laws in curvilinear coordinates. Based on them, the semi-implicit relaxing schemes are con- structed as in [6, 12] without using any linear or nonlinear Riemann solvers. Numerical experiments for one-dimensional and two-dimensional problems are presented to demon- strate the performance and resolution of the current schemes.