An exact closed form of solution to the hyperradial Schrdinger equation is constructed for any generalcase comprising any hypercentral power and inverse-power potential.The hypercentral potential depends only on thehy...An exact closed form of solution to the hyperradial Schrdinger equation is constructed for any generalcase comprising any hypercentral power and inverse-power potential.The hypercentral potential depends only on thehyperradius,which itself is a function of Jacobi relative coordinates that are functions of particle positions(r_1,r_2,…...,r_N).This article is mainly devoted to the dernonstrat of the fact that any ψ of the form ψ=power series×exp(polynomial)=[f(x)exp(g(x))]is potentially a solution of the Schrdinger equation,where the polynomial g(x)is an ansatz dependingon the interaction potential.展开更多
文摘An exact closed form of solution to the hyperradial Schrdinger equation is constructed for any generalcase comprising any hypercentral power and inverse-power potential.The hypercentral potential depends only on thehyperradius,which itself is a function of Jacobi relative coordinates that are functions of particle positions(r_1,r_2,…...,r_N).This article is mainly devoted to the dernonstrat of the fact that any ψ of the form ψ=power series×exp(polynomial)=[f(x)exp(g(x))]is potentially a solution of the Schrdinger equation,where the polynomial g(x)is an ansatz dependingon the interaction potential.