Nonlinear behaviors are commonplace in many complex engineering applications,e.g.,metal forming,vehicle crash test and so on.This paper focuses on the T-spline based isogeometric analysis of two-dimensional nonlinear ...Nonlinear behaviors are commonplace in many complex engineering applications,e.g.,metal forming,vehicle crash test and so on.This paper focuses on the T-spline based isogeometric analysis of two-dimensional nonlinear problems including general large deformation hyperelastic problems and small deformation elastoplastic problems,to reveal the advantages of local refinement property of T-splines in describing nonlinear behavior of materials.By applying the adaptive refinement capability of T-splines during the iteration process of analysis,the numerical simulation accuracy of the nonlinear model could be increased dramatically.The Bézier extraction of the T-splines provides an element structure for isogeometric analysis that can be easily incorporated into existing nonlinear finite element codes.In addition,T-splines show great superiority of modeling complex geometries especially when the model is irregular and with hole features.Several numerical examples have been tested to validate the accuracy and convergence of the proposed method.The obtained results are compared with those from NURBS-based isogeometric analysis and commercial software ABAQUS.展开更多
Some nonlinear dynamic properties of axisymmetric deformation are ex- amined for a spherical membrane composed of a transversely isotropic incompressible Rivlin-Saunders material. The membrane is subjected to periodic...Some nonlinear dynamic properties of axisymmetric deformation are ex- amined for a spherical membrane composed of a transversely isotropic incompressible Rivlin-Saunders material. The membrane is subjected to periodic step loads at its inner and outer surfaces. A second-order nonlinear ordinary differential equation approximately describing radially symmetric motion of the membrane is obtained by setting the thick- ness of the spherical structure close to one. The qualitative properties of the solutions are discussed in detail. In particular, the conditions that control the nonlinear periodic oscillation of the spherical membrane are proposed. In certain cases, it is proved that the oscillating form of the spherical membrane would present a homoclinic orbit of type "∞", and the amplitude growth of the periodic oscillation is discontinuous. Numerical results are provided.展开更多
Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead load...Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.展开更多
In literature,nonlinear traveling waves in elastic circular rods have only been studied based on single partial differential equation(pde)models,and here we consider such a problem by using a more accurate coupled-pde...In literature,nonlinear traveling waves in elastic circular rods have only been studied based on single partial differential equation(pde)models,and here we consider such a problem by using a more accurate coupled-pde model.We derive the Hamiltonian from the model equations for the long finite-amplitude wave approximation,analyze how the number of singular points of the system changes with the parameters,and study the features of these singular points qualitatively.Various physically acceptable nonlinear traveling waves are also discussed,and corresponding examples are given.In particular,we find that certain waves,which cannot be counted by the single-equation model,can arise.展开更多
Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed bas...Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed based on the multiresolution design strategy(MRDS)and the additive hyperelasticity technique(AHT),taking into account the geometric nonlinearity and material nonlinearity.The MR-NTO strategy is established in the framework of the solid isotropic material with penalization(SIMP)method,while the Neo-Hookean hyperelastic material model characterizes the material nonlinearity.The coarse analysis grid is employed for finite element(FE)calculation,and the fine material grid is applied to describe the material configuration.To alleviate the convergence problem and reduce sensitivity calculation complexity,the software ANSYS coupled with AHT is utilized to perform the nonlinear FE calculation.A strategy for redistributing strain energy is proposed during the sensitivity analysis,i.e.,transforming the strain energy of the analysis element into that of the material element,including Neo-Hooken and second-order Yeoh material.Numerical examples highlight three distinct advantages of the proposed method,i.e.,it can(1)significantly improve the computational efficiency,(2)make up for the shortcoming that NTO based on AHT may have difficulty in convergence when solving the NTO problem,especially for 3D problems,(3)successfully cope with high-resolution 3D complex NTO problems on a personal computer.展开更多
In this paper, the dynamic characteristics are examined for a cylindrical membrane composed of a transversely isotropic incompressible hyperelastic material under an applied uniform radial constant pressure at its inn...In this paper, the dynamic characteristics are examined for a cylindrical membrane composed of a transversely isotropic incompressible hyperelastic material under an applied uniform radial constant pressure at its inner surface. A second-order nonlinear ordinary differential equation that approximately describes the radial oscillation of the inner surface of the membrane with respect to time is obtained. Some interesting conclusions are proposed for different materials, such as the neo-Hookean material, the Mooney-Rivlin material and the Rivlin-Saunders material. Firstly, the bifurcation conditions depending on the material parameters and the pressure loads are determined. Secondly, the conditions of periodic motion are presented in detail for membranes composed of different materials. Meanwhile, numerical simulations are also provided.展开更多
物质点法(material point method,MPM)采用Lagrange质点和Euler网格双重描述,适合处理大变形和接触问题.该文基于对流粒子域插值物质点法(CPDI2)框架分析了薄壳结构的大变形问题:使用四边形网格来离散壳体结构,通过物质点到壳单元节点...物质点法(material point method,MPM)采用Lagrange质点和Euler网格双重描述,适合处理大变形和接触问题.该文基于对流粒子域插值物质点法(CPDI2)框架分析了薄壳结构的大变形问题:使用四边形网格来离散壳体结构,通过物质点到壳单元节点再到背景网格节点的双重映射计算基函数,在背景网格上求解动量方程,基于BT壳单元理论更新物质点的内力.数值算例将受大变形的壳结构与参考解进行了比较,验证了该文方法的准确性.展开更多
Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate for...Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate formulation(ANCF) beam element employs cubic interpolation in the longitudinal direction and linear interpolation in the transverse direction, whereas it cannot accurately describe the large bending deformation. On this account, a novel modeling method for studying the dynamic behavior of nonlinear materials is proposed in this paper. In this formulation, a higher-order beam element characterized by quadratic interpolation in the transverse directions is used in this investigation. Based on the Yeoh model and volumetric energy penalty function, the nonlinear elastic force matrices are derived within the ANCF framework. The feasibility and availability of the Yeoh model are verified through static experiment of nonlinear incompressible materials. Furthermore,dynamic simulation of a silicone cantilever beam under the gravity force is implemented to validate the superiority of the higher-order beam element. The simulation results obtained based on the Yeoh model by employing three different ANCF beam elements are compared with the result achieved from a commercial finite element package as the reference result. It is found that the results acquired utilizing a higher-order beam element are in good agreement with the reference results,while the results obtained using a lower-order beam element are different from the reference results. In addition, the stiffening problem caused by volumetric locking can be resolved effectively by applying a higher-order beam element. It is concluded that the proposed higher-order beam element formulation has satisfying accuracy in simulating dynamic motion process of the silicone beam.展开更多
基金support by the Natural Science Foundation of China(Project Nos.61972011 and 61572056).
文摘Nonlinear behaviors are commonplace in many complex engineering applications,e.g.,metal forming,vehicle crash test and so on.This paper focuses on the T-spline based isogeometric analysis of two-dimensional nonlinear problems including general large deformation hyperelastic problems and small deformation elastoplastic problems,to reveal the advantages of local refinement property of T-splines in describing nonlinear behavior of materials.By applying the adaptive refinement capability of T-splines during the iteration process of analysis,the numerical simulation accuracy of the nonlinear model could be increased dramatically.The Bézier extraction of the T-splines provides an element structure for isogeometric analysis that can be easily incorporated into existing nonlinear finite element codes.In addition,T-splines show great superiority of modeling complex geometries especially when the model is irregular and with hole features.Several numerical examples have been tested to validate the accuracy and convergence of the proposed method.The obtained results are compared with those from NURBS-based isogeometric analysis and commercial software ABAQUS.
基金supported by the National Natural Science Foundation of China (Nos.10872045, 10721062,and 10772104)the Program for New Century Excellent Talents in University (No.NCET-09-0096)+1 种基金the Post-Doctoral Science Foundation of China (No.20070421049)the Fundamental Research Funds for the Central Universities (No.DC10030104)
文摘Some nonlinear dynamic properties of axisymmetric deformation are ex- amined for a spherical membrane composed of a transversely isotropic incompressible Rivlin-Saunders material. The membrane is subjected to periodic step loads at its inner and outer surfaces. A second-order nonlinear ordinary differential equation approximately describing radially symmetric motion of the membrane is obtained by setting the thick- ness of the spherical structure close to one. The qualitative properties of the solutions are discussed in detail. In particular, the conditions that control the nonlinear periodic oscillation of the spherical membrane are proposed. In certain cases, it is proved that the oscillating form of the spherical membrane would present a homoclinic orbit of type "∞", and the amplitude growth of the periodic oscillation is discontinuous. Numerical results are provided.
基金Project supported by the National Natural Science Foundation of China (No.10272069)Shanghai Leading Academic Discipline Project (No.Y0103)
文摘Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.
基金The project supported by the Research Grants Council of the HKSAR,China (CityU 1107/99P) and the National Natural Science Foundation of China (10372054 and 10171061)
文摘In literature,nonlinear traveling waves in elastic circular rods have only been studied based on single partial differential equation(pde)models,and here we consider such a problem by using a more accurate coupled-pde model.We derive the Hamiltonian from the model equations for the long finite-amplitude wave approximation,analyze how the number of singular points of the system changes with the parameters,and study the features of these singular points qualitatively.Various physically acceptable nonlinear traveling waves are also discussed,and corresponding examples are given.In particular,we find that certain waves,which cannot be counted by the single-equation model,can arise.
基金supported by the National Natural Science Foundation of China(Grant Nos.11902085 and 11832009)the Science and Technology Association Young Scientific and Technological Talents Support Project of Guangzhou City(Grant No.SKX20210304)the Natural Science Foundation of Guangdong Province(Grant No.2021Al515010320).
文摘Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed based on the multiresolution design strategy(MRDS)and the additive hyperelasticity technique(AHT),taking into account the geometric nonlinearity and material nonlinearity.The MR-NTO strategy is established in the framework of the solid isotropic material with penalization(SIMP)method,while the Neo-Hookean hyperelastic material model characterizes the material nonlinearity.The coarse analysis grid is employed for finite element(FE)calculation,and the fine material grid is applied to describe the material configuration.To alleviate the convergence problem and reduce sensitivity calculation complexity,the software ANSYS coupled with AHT is utilized to perform the nonlinear FE calculation.A strategy for redistributing strain energy is proposed during the sensitivity analysis,i.e.,transforming the strain energy of the analysis element into that of the material element,including Neo-Hooken and second-order Yeoh material.Numerical examples highlight three distinct advantages of the proposed method,i.e.,it can(1)significantly improve the computational efficiency,(2)make up for the shortcoming that NTO based on AHT may have difficulty in convergence when solving the NTO problem,especially for 3D problems,(3)successfully cope with high-resolution 3D complex NTO problems on a personal computer.
基金Project supported by the National Natural Science Foundation of China (Nos. 10872045 and 10772104)the Program for New Century Excellent Talents in University (No. NCET-09-0096)the Fundamental Research Funds for the Central Universities (No. DC10030104)
文摘In this paper, the dynamic characteristics are examined for a cylindrical membrane composed of a transversely isotropic incompressible hyperelastic material under an applied uniform radial constant pressure at its inner surface. A second-order nonlinear ordinary differential equation that approximately describes the radial oscillation of the inner surface of the membrane with respect to time is obtained. Some interesting conclusions are proposed for different materials, such as the neo-Hookean material, the Mooney-Rivlin material and the Rivlin-Saunders material. Firstly, the bifurcation conditions depending on the material parameters and the pressure loads are determined. Secondly, the conditions of periodic motion are presented in detail for membranes composed of different materials. Meanwhile, numerical simulations are also provided.
文摘物质点法(material point method,MPM)采用Lagrange质点和Euler网格双重描述,适合处理大变形和接触问题.该文基于对流粒子域插值物质点法(CPDI2)框架分析了薄壳结构的大变形问题:使用四边形网格来离散壳体结构,通过物质点到壳单元节点再到背景网格节点的双重映射计算基函数,在背景网格上求解动量方程,基于BT壳单元理论更新物质点的内力.数值算例将受大变形的壳结构与参考解进行了比较,验证了该文方法的准确性.
基金supported by the National Natural Science Foundation of China (11772186 and 11272203)
文摘Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate formulation(ANCF) beam element employs cubic interpolation in the longitudinal direction and linear interpolation in the transverse direction, whereas it cannot accurately describe the large bending deformation. On this account, a novel modeling method for studying the dynamic behavior of nonlinear materials is proposed in this paper. In this formulation, a higher-order beam element characterized by quadratic interpolation in the transverse directions is used in this investigation. Based on the Yeoh model and volumetric energy penalty function, the nonlinear elastic force matrices are derived within the ANCF framework. The feasibility and availability of the Yeoh model are verified through static experiment of nonlinear incompressible materials. Furthermore,dynamic simulation of a silicone cantilever beam under the gravity force is implemented to validate the superiority of the higher-order beam element. The simulation results obtained based on the Yeoh model by employing three different ANCF beam elements are compared with the result achieved from a commercial finite element package as the reference result. It is found that the results acquired utilizing a higher-order beam element are in good agreement with the reference results,while the results obtained using a lower-order beam element are different from the reference results. In addition, the stiffening problem caused by volumetric locking can be resolved effectively by applying a higher-order beam element. It is concluded that the proposed higher-order beam element formulation has satisfying accuracy in simulating dynamic motion process of the silicone beam.