This paper is devoted to counting the number of isomorphism classes of pointed hyperelliptic curves over finite fields. We deal with the genus 4 case and the finite fields are of even characteristics. The number of is...This paper is devoted to counting the number of isomorphism classes of pointed hyperelliptic curves over finite fields. We deal with the genus 4 case and the finite fields are of even characteristics. The number of isomorphism classes is computed and the explicit formulae are given. This number can be represented as a polynomial in q of degree 7, where q is the order of the finite field. The result can be used in the classification problems and it is useful for further studies of hyperelliptic curve cryptosystems, e.g. it is of interest for research on implementing the arithmetics of curves of low genus for cryptographic purposes. It could also be of interest for point counting problems; both on moduli spaces of curves, and on finding the maximal number of points that a pointed hyperelliptic curve over a given finite field may have.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 10501049,60821002)973 Project (Grant No. 2004CB318000)
文摘This paper is devoted to counting the number of isomorphism classes of pointed hyperelliptic curves over finite fields. We deal with the genus 4 case and the finite fields are of even characteristics. The number of isomorphism classes is computed and the explicit formulae are given. This number can be represented as a polynomial in q of degree 7, where q is the order of the finite field. The result can be used in the classification problems and it is useful for further studies of hyperelliptic curve cryptosystems, e.g. it is of interest for research on implementing the arithmetics of curves of low genus for cryptographic purposes. It could also be of interest for point counting problems; both on moduli spaces of curves, and on finding the maximal number of points that a pointed hyperelliptic curve over a given finite field may have.