Highly charged nickel ions have been suggested as candidates for the ultra-precise optical clock, meanwhile the relevant experiment has been carried out. In the framework of the multiconfiguration Dirac–Hartree–Fock...Highly charged nickel ions have been suggested as candidates for the ultra-precise optical clock, meanwhile the relevant experiment has been carried out. In the framework of the multiconfiguration Dirac–Hartree–Fock(MCDHF)method, we calculated the hyperfine interaction constants, the Landég-factors, and the electric quadrupole moments for the low-lying states in the 61Ni11+,61Ni12+,61Ni14+, and61Ni15+ ions. These states are clock states of the selected clock transitions in highly charged nickel ions(see Fig. 1). Based on discussing the effects of the electron correlations, the Breit interaction, and quantum electrodynamics(QED) effect on these physical quantities, reasonable uncertainties were obtained for our calculated results. In addition, the electric quadrupole frequency shifts and the Zeeman frequency shifts of the clock transitions concerned were analyzed.展开更多
Weak- and hyperfine-interaction-induced 1 s2s 1S0→ 1S2 1 S0 E 1 transition rates for the isoelectronic sequence of Helike ions have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) and rela...Weak- and hyperfine-interaction-induced 1 s2s 1S0→ 1S2 1 S0 E 1 transition rates for the isoelectronic sequence of Helike ions have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction methods. The results should be helpful for the future experimental investigations of parity non-conservation effects.展开更多
In this paper, an overview of the theory of Mössbauer effect is covered, and the main hyperfine interactions parameters which affect the shape of the resultant Mössbauer spectrum are explained and il...In this paper, an overview of the theory of Mössbauer effect is covered, and the main hyperfine interactions parameters which affect the shape of the resultant Mössbauer spectrum are explained and illustrated as well. In principle, Mössbauer effect applies to any and all nuclides, but in practice, certain ideal properties are desirable;that is, the conditions for recoil-free emission and absorption of gamma rays must be optimized. Therefore, briefly discussed in this review, one of the most commonly used for practical and fundamental studies the 151Eu Mössbauer isotope. Also, the intermediate valence phenomena and their theoretical treatments are briefly discussed.展开更多
Samples of undoped, and CuO, CaO, Al2O3 as well as V2O5 doped MnZn ferrite were prepared using standard ceramic method. The X-ray diffraction results for the base and doped ferrite samples show a single phase with spi...Samples of undoped, and CuO, CaO, Al2O3 as well as V2O5 doped MnZn ferrite were prepared using standard ceramic method. The X-ray diffraction results for the base and doped ferrite samples show a single phase with spinel cubic structure. The Mossbauer spectrum of the base sample indicates line broadening and overlapping due to relaxation of magnetic dipoles. The temperature dependence of DC-electrical conductivity has been discussed on the basis of electronic conduction (electron hopping) and ionic conduction mechanism.展开更多
Relativistic many-body perturbation calculation is applied to calculate the hyperfine constants for the lowlying states 6S1/2, 6P1/2, 6P3/2, 5D3/2, and 5D5/2 in the alkaline earth ion ^137Ba^+. The zeroth-order hyper...Relativistic many-body perturbation calculation is applied to calculate the hyperfine constants for the lowlying states 6S1/2, 6P1/2, 6P3/2, 5D3/2, and 5D5/2 in the alkaline earth ion ^137Ba^+. The zeroth-order hyperfine constants are calculated with Dirac-Fock wave functions, and the finite basis sets of the Dirac-Fock equation are constructed by B splines. With the finite basis sets, the core polarization and the correlation effect are calculated. The final results for magnetic dipole hyperfine a constants are obtained.展开更多
A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclea...A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the ^14N nuclear spins lead to a triplet splitting of the transition between ground state (ms = 0) and excited state (ms=1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.展开更多
We report the production of^(39) K and^(87) Rb Bose–Einstein condensates(BECs) in the lowest hyperfine states |F =1, m_(F) = 1 simultaneously. We collect atoms in bright/dark magneto-optical traps(MOTs) of^(39) K/^(8...We report the production of^(39) K and^(87) Rb Bose–Einstein condensates(BECs) in the lowest hyperfine states |F =1, m_(F) = 1 simultaneously. We collect atoms in bright/dark magneto-optical traps(MOTs) of^(39) K/^(87) Rb to overcome the light-assisted losses of^(39) K atoms. Gray molasses cooling on the D1 line of the^(39) K is used to effectively increase the phase density, which improves the loading efficiency of^(39) K into the quadrupole magnetic trap. Simultaneously, the normal molasses is employed for^(87) Rb. After the microwave evaporation cooling on^(87) Rb in the optically plugged magnetic trap,the atoms mixture is transferred to a crossed optical dipole trap, where the collisional properties of the two species in different combinations of the hyperfine states are studied. The dual species BECs of^(39) K and^(87) Rb are obtained by further evaporative cooling in an optical dipole trap at a magnetic field of 372.6 G with the background repulsive interspecies scattering length a_(KRb)= 34 a_(0)(a_(0) is the Bohr radius) and the intraspecies scattering length a_K= 20.05 a_(0).展开更多
The quark delocalization colour screening model provides an alternative approach for the NN intermediate range attraction, which is attributed to the σ meson exchange in the meson exchange and chiral quark model. How...The quark delocalization colour screening model provides an alternative approach for the NN intermediate range attraction, which is attributed to the σ meson exchange in the meson exchange and chiral quark model. However the quark delocalization induces the spurious centre-of-mass motion (CMM). A method for subtracting the spurious CMM proposed before is applied to the new scattering calculation. The subtraction of the spurious CMM results in an additional NN attraction. The NN scattering data are refitted by a fine tune of the colour screening constant.展开更多
For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the...For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.展开更多
The effect of non-magnetic Al^3+ ion doping on the magnetic properties of MnFe2-2x Al2xO4 (0 ≤x≤ 0.4) spinel ferrites was studied using Moessbauer spectroscopy measurements at room temperature. From the Moessbaue...The effect of non-magnetic Al^3+ ion doping on the magnetic properties of MnFe2-2x Al2xO4 (0 ≤x≤ 0.4) spinel ferrites was studied using Moessbauer spectroscopy measurements at room temperature. From the Moessbauer study, it is observed that the :esolved hyperfine sextets are due to the distribution of Fe ions on the two sublattices of the spinel ferrites. The value of the isomer shift obtained from the fitting of the Moessbauer spectra indicates that Fe ions are in +3 state. A paramagnetic doublet is observed at :iegree of inversion x=0.4, superimposed on the hyperfine sextets, indicating that the super-exchange interaction A-B decreases due to :he dilution of sublattice by Al^3+ ions. The hyperfine magnetic field decreases at both interstitial sites of tetrahedral (A) and 3ctahedral (B) with the increase in Al concentration.展开更多
Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved t...Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.展开更多
The defects, the behavior of 3d electrons and the hyperfine interactions in binary Fe-Al alloys with different Al contents have been studied by measurements of positron lifetime spectra, coincidence Doppler broadening...The defects, the behavior of 3d electrons and the hyperfine interactions in binary Fe-Al alloys with different Al contents have been studied by measurements of positron lifetime spectra, coincidence Doppler broadening spectra of positron annihilation radiation and M?ssbauer spectra. The results show that on increasing the Al content in Fe-Al alloys, the mean positron lifetime of the alloys increase, while the mean electron density of the alloys decrease. The increase of Al content in binary Fe-Al alloys will decrease the amount of unpaired 3d electrons; as a consequence the probability of positron annihilation with 3d electrons and the hyperfine field decrease rapidly. M?ssbauer spectra of binary Fe-Al alloys with Al content less than 25 at.% show discrete sextets and these alloys make a ferromagnetic contribution at room temperature. The M?ssbauer spectrum of Fe70Al30 shows a broad singlet. As Al content higher than 40 at.%, the M?ssbauer spectra of these alloys are singlet, that is, the alloys are paramagnetic. The behavior of a 3d electron and its effect on the hyperfine field of the binary Fe-Al alloy has been discussed.展开更多
YBa2(Cu3-xFex)Oy (x is 0.001, 0.005, 0.01, 0.1 and 0.3 respectively), of whichCu is replaced with 57Fe are studied using M0ssbauer spectroscopy to understand thecrystal lattice property, the effects of the replacement...YBa2(Cu3-xFex)Oy (x is 0.001, 0.005, 0.01, 0.1 and 0.3 respectively), of whichCu is replaced with 57Fe are studied using M0ssbauer spectroscopy to understand thecrystal lattice property, the effects of the replacement on superconductivity of theHigh To materials.展开更多
Six amorphous alloys (Alloy 1: Fe<sub>56</sub>Co<sub>24</sub>Nb<sub>4</sub>B<sub>13</sub>Si<sub>2</sub>Cu<sub>1</sub>, Alloy 2: Fe<sub>68.5...Six amorphous alloys (Alloy 1: Fe<sub>56</sub>Co<sub>24</sub>Nb<sub>4</sub>B<sub>13</sub>Si<sub>2</sub>Cu<sub>1</sub>, Alloy 2: Fe<sub>68.5</sub>Co<sub>5</sub>Nb<sub>3</sub>Cu<sub>1</sub>Si<sub>15.5</sub>B<sub>7</sub>, Alloy 3: Fe<sub>75.3</sub>Ni<sub>0.8</sub>Cr<sub>0.9</sub>Si<sub>8.7</sub>B<sub>14.3</sub>, Alloy 4: Fe<sub>56</sub>Co<sub>24</sub>Cr<sub>10</sub>Nb<sub>4</sub>B<sub>3</sub>Si<sub>1</sub>Cu<sub>2</sub>, Alloy 5: Fe<sub>72.9</sub>Nb<sub>3</sub>Cu<sub>1</sub>Si<sub>16.2</sub>B<sub>6.9</sub>, Alloy 6: Fe<sub>83.3</sub>Si<sub>8.6</sub>Nb<sub>5.5</sub>B<sub>1.4</sub>Cu<sub>1.2</sub>) were selected in terms of their composition and magnetostriction constants and uniformly irradiated in a high radiation environment in Hall A of the Thomas Jefferson National Accelerator Facility. The 2 GeV electron beam irradiation-induced effects were characterized by Mӧssbauer spectroscopy. The microstructural changes were related to the evolution of the hyperfine magnetic field distributions and isomer shifts. In particular, the occurrence of stress centers in the amorphous materials was evidenced.展开更多
Barium hexaferrites BaFe11.6Mox Zn0.4-x O19(x=0.1,0.2,0.4)were prepared by precipitation of the precursors using wet chemical mixture method and then sintering the dried powders at 1100℃.The properties of the prepa...Barium hexaferrites BaFe11.6Mox Zn0.4-x O19(x=0.1,0.2,0.4)were prepared by precipitation of the precursors using wet chemical mixture method and then sintering the dried powders at 1100℃.The properties of the prepared samples were investigated using X-ray difraction(XRD),scanning electron microscopy(SEM),vibrating sample magnetometer,and Mssbauer spectroscopy.XRD patterns revealed that all prepared samples had BaFe12O19hexaferrite structure as a majority phase.SEM images demonstated that the samples consisted mainly of hexagonal platelet-like grains with diameters ranging from 100 to 500 nm.Mssbauer spectra revealed that Zn2+ions occupy 4f1 sites leading to the splitting of the 12k component.However Mo6+ions occupy 2b sites while Mo4+ prefer 4f1 and 12k sites.For the sample with x=0.4,Mo6+and Mo4+ ions were found to have preference for 2b and 12k sites,respectively,and to induce the development of Fe2+ions in the hexaferrite,leading to noticeable changes in the magnetic properties of the system.The observed magnetic properties were found to be consistent with the preferential site occupation of metal ions,and the hyperfine fields derived from Mssbauer spectra of these samples.展开更多
Perturbation theory on optical ac stark effect is applied to study the NMR spectroscopy in paramagnetic systems. Application of the circularly or linearly polarized optical field would lead to shifts in the NMR line, ...Perturbation theory on optical ac stark effect is applied to study the NMR spectroscopy in paramagnetic systems. Application of the circularly or linearly polarized optical field would lead to shifts in the NMR line, which is proportional to the laser intensity and the induced polarizability tensors by hyperfine interaction.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704398 and 11934014)the National Key Research and Development Program of China(Grant No.2017YFA0304402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030300)。
文摘Highly charged nickel ions have been suggested as candidates for the ultra-precise optical clock, meanwhile the relevant experiment has been carried out. In the framework of the multiconfiguration Dirac–Hartree–Fock(MCDHF)method, we calculated the hyperfine interaction constants, the Landég-factors, and the electric quadrupole moments for the low-lying states in the 61Ni11+,61Ni12+,61Ni14+, and61Ni15+ ions. These states are clock states of the selected clock transitions in highly charged nickel ions(see Fig. 1). Based on discussing the effects of the electron correlations, the Breit interaction, and quantum electrodynamics(QED) effect on these physical quantities, reasonable uncertainties were obtained for our calculated results. In addition, the electric quadrupole frequency shifts and the Zeeman frequency shifts of the clock transitions concerned were analyzed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274254,11147108,10979007,U1331122,and U1332206)in part by the National Basic Research Program of China(Grant No.2013CB922200)
文摘Weak- and hyperfine-interaction-induced 1 s2s 1S0→ 1S2 1 S0 E 1 transition rates for the isoelectronic sequence of Helike ions have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction methods. The results should be helpful for the future experimental investigations of parity non-conservation effects.
文摘In this paper, an overview of the theory of Mössbauer effect is covered, and the main hyperfine interactions parameters which affect the shape of the resultant Mössbauer spectrum are explained and illustrated as well. In principle, Mössbauer effect applies to any and all nuclides, but in practice, certain ideal properties are desirable;that is, the conditions for recoil-free emission and absorption of gamma rays must be optimized. Therefore, briefly discussed in this review, one of the most commonly used for practical and fundamental studies the 151Eu Mössbauer isotope. Also, the intermediate valence phenomena and their theoretical treatments are briefly discussed.
文摘Samples of undoped, and CuO, CaO, Al2O3 as well as V2O5 doped MnZn ferrite were prepared using standard ceramic method. The X-ray diffraction results for the base and doped ferrite samples show a single phase with spinel cubic structure. The Mossbauer spectrum of the base sample indicates line broadening and overlapping due to relaxation of magnetic dipoles. The temperature dependence of DC-electrical conductivity has been discussed on the basis of electronic conduction (electron hopping) and ionic conduction mechanism.
文摘Relativistic many-body perturbation calculation is applied to calculate the hyperfine constants for the lowlying states 6S1/2, 6P1/2, 6P3/2, 5D3/2, and 5D5/2 in the alkaline earth ion ^137Ba^+. The zeroth-order hyperfine constants are calculated with Dirac-Fock wave functions, and the finite basis sets of the Dirac-Fock equation are constructed by B splines. With the finite basis sets, the core polarization and the correlation effect are calculated. The final results for magnetic dipole hyperfine a constants are obtained.
基金supported by the National Basic Research Program of China(Grant No.2009CB929103)the National Natural Science Foundation of China(Grant No.10974251)
文摘A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the ^14N nuclear spins lead to a triplet splitting of the transition between ground state (ms = 0) and excited state (ms=1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.
基金supported by the National Key R&D Program of China (Grants Nos. 2016YFA0301602 and 2018YFA0307601)the National Natural Science Foundation of China (Grant Nos. 11974224, 11704234, 11804203, 12034011, 12022406, 12004229, and 92065108)+1 种基金the Fund for Shanxi “1331 Project” Key Subjects Constructionthe Program of Youth Sanjin Scholar。
文摘We report the production of^(39) K and^(87) Rb Bose–Einstein condensates(BECs) in the lowest hyperfine states |F =1, m_(F) = 1 simultaneously. We collect atoms in bright/dark magneto-optical traps(MOTs) of^(39) K/^(87) Rb to overcome the light-assisted losses of^(39) K atoms. Gray molasses cooling on the D1 line of the^(39) K is used to effectively increase the phase density, which improves the loading efficiency of^(39) K into the quadrupole magnetic trap. Simultaneously, the normal molasses is employed for^(87) Rb. After the microwave evaporation cooling on^(87) Rb in the optically plugged magnetic trap,the atoms mixture is transferred to a crossed optical dipole trap, where the collisional properties of the two species in different combinations of the hyperfine states are studied. The dual species BECs of^(39) K and^(87) Rb are obtained by further evaporative cooling in an optical dipole trap at a magnetic field of 372.6 G with the background repulsive interspecies scattering length a_(KRb)= 34 a_(0)(a_(0) is the Bohr radius) and the intraspecies scattering length a_K= 20.05 a_(0).
基金Supported by the National Science Foundation of China under grant number 90503011 and 10375030.
文摘The quark delocalization colour screening model provides an alternative approach for the NN intermediate range attraction, which is attributed to the σ meson exchange in the meson exchange and chiral quark model. However the quark delocalization induces the spurious centre-of-mass motion (CMM). A method for subtracting the spurious CMM proposed before is applied to the new scattering calculation. The subtraction of the spurious CMM results in an additional NN attraction. The NN scattering data are refitted by a fine tune of the colour screening constant.
基金supported by the National Basic Research Program of China(Grant No.2010CB923402)the National Natural Science Foundation of China(Grant Nos.11174181 and 21161160445)the Program of Introducing Talents of Discipline to Universities,China(Grant No.B13029)
文摘For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.
基金Project supported by the Second Stage of Brain Korea 21 ProjectProject(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE),Korea
文摘The effect of non-magnetic Al^3+ ion doping on the magnetic properties of MnFe2-2x Al2xO4 (0 ≤x≤ 0.4) spinel ferrites was studied using Moessbauer spectroscopy measurements at room temperature. From the Moessbauer study, it is observed that the :esolved hyperfine sextets are due to the distribution of Fe ions on the two sublattices of the spinel ferrites. The value of the isomer shift obtained from the fitting of the Moessbauer spectra indicates that Fe ions are in +3 state. A paramagnetic doublet is observed at :iegree of inversion x=0.4, superimposed on the hyperfine sextets, indicating that the super-exchange interaction A-B decreases due to :he dilution of sublattice by Al^3+ ions. The hyperfine magnetic field decreases at both interstitial sites of tetrahedral (A) and 3ctahedral (B) with the increase in Al concentration.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374103 and 10574143), and the National Basic Research Program of China (Grant No 2001CB309309).
文摘Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification δa(S·I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change δa(S · I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.
基金Supported by National Natural Science Foundation of China(10764001,51061002)Program for Science and Technology Innovation Team of Guangxi University
文摘The defects, the behavior of 3d electrons and the hyperfine interactions in binary Fe-Al alloys with different Al contents have been studied by measurements of positron lifetime spectra, coincidence Doppler broadening spectra of positron annihilation radiation and M?ssbauer spectra. The results show that on increasing the Al content in Fe-Al alloys, the mean positron lifetime of the alloys increase, while the mean electron density of the alloys decrease. The increase of Al content in binary Fe-Al alloys will decrease the amount of unpaired 3d electrons; as a consequence the probability of positron annihilation with 3d electrons and the hyperfine field decrease rapidly. M?ssbauer spectra of binary Fe-Al alloys with Al content less than 25 at.% show discrete sextets and these alloys make a ferromagnetic contribution at room temperature. The M?ssbauer spectrum of Fe70Al30 shows a broad singlet. As Al content higher than 40 at.%, the M?ssbauer spectra of these alloys are singlet, that is, the alloys are paramagnetic. The behavior of a 3d electron and its effect on the hyperfine field of the binary Fe-Al alloy has been discussed.
文摘YBa2(Cu3-xFex)Oy (x is 0.001, 0.005, 0.01, 0.1 and 0.3 respectively), of whichCu is replaced with 57Fe are studied using M0ssbauer spectroscopy to understand thecrystal lattice property, the effects of the replacement on superconductivity of theHigh To materials.
文摘Six amorphous alloys (Alloy 1: Fe<sub>56</sub>Co<sub>24</sub>Nb<sub>4</sub>B<sub>13</sub>Si<sub>2</sub>Cu<sub>1</sub>, Alloy 2: Fe<sub>68.5</sub>Co<sub>5</sub>Nb<sub>3</sub>Cu<sub>1</sub>Si<sub>15.5</sub>B<sub>7</sub>, Alloy 3: Fe<sub>75.3</sub>Ni<sub>0.8</sub>Cr<sub>0.9</sub>Si<sub>8.7</sub>B<sub>14.3</sub>, Alloy 4: Fe<sub>56</sub>Co<sub>24</sub>Cr<sub>10</sub>Nb<sub>4</sub>B<sub>3</sub>Si<sub>1</sub>Cu<sub>2</sub>, Alloy 5: Fe<sub>72.9</sub>Nb<sub>3</sub>Cu<sub>1</sub>Si<sub>16.2</sub>B<sub>6.9</sub>, Alloy 6: Fe<sub>83.3</sub>Si<sub>8.6</sub>Nb<sub>5.5</sub>B<sub>1.4</sub>Cu<sub>1.2</sub>) were selected in terms of their composition and magnetostriction constants and uniformly irradiated in a high radiation environment in Hall A of the Thomas Jefferson National Accelerator Facility. The 2 GeV electron beam irradiation-induced effects were characterized by Mӧssbauer spectroscopy. The microstructural changes were related to the evolution of the hyperfine magnetic field distributions and isomer shifts. In particular, the occurrence of stress centers in the amorphous materials was evidenced.
基金supported by a generous grant from the Scientific Research Fund (SRF) in Jordan under grant number(S/1/21/2009)support of the German Academic Exchange Program(DAAD)the Deanship of Scientific research at the University of Jordan under contract number 1404 are also acknowledged
文摘Barium hexaferrites BaFe11.6Mox Zn0.4-x O19(x=0.1,0.2,0.4)were prepared by precipitation of the precursors using wet chemical mixture method and then sintering the dried powders at 1100℃.The properties of the prepared samples were investigated using X-ray difraction(XRD),scanning electron microscopy(SEM),vibrating sample magnetometer,and Mssbauer spectroscopy.XRD patterns revealed that all prepared samples had BaFe12O19hexaferrite structure as a majority phase.SEM images demonstated that the samples consisted mainly of hexagonal platelet-like grains with diameters ranging from 100 to 500 nm.Mssbauer spectra revealed that Zn2+ions occupy 4f1 sites leading to the splitting of the 12k component.However Mo6+ions occupy 2b sites while Mo4+ prefer 4f1 and 12k sites.For the sample with x=0.4,Mo6+and Mo4+ ions were found to have preference for 2b and 12k sites,respectively,and to induce the development of Fe2+ions in the hexaferrite,leading to noticeable changes in the magnetic properties of the system.The observed magnetic properties were found to be consistent with the preferential site occupation of metal ions,and the hyperfine fields derived from Mssbauer spectra of these samples.
基金Project supported by the National Natural Science Foundation of China (No. 29873043)the Ph. D. Foundation of Education ministry of China
文摘Perturbation theory on optical ac stark effect is applied to study the NMR spectroscopy in paramagnetic systems. Application of the circularly or linearly polarized optical field would lead to shifts in the NMR line, which is proportional to the laser intensity and the induced polarizability tensors by hyperfine interaction.