期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improving Chinese Word Representation with Conceptual Semantics 被引量:1
1
作者 Tingxin Wei Weiguang Qu +3 位作者 Junsheng Zhou Yunfei Long Yanhui Gu Zhentao Xia 《Computers, Materials & Continua》 SCIE EI 2020年第9期1897-1913,共17页
The meaning of a word includes a conceptual meaning and a distributive meaning.Word embedding based on distribution suffers from insufficient conceptual semantic representation caused by data sparsity,especially for l... The meaning of a word includes a conceptual meaning and a distributive meaning.Word embedding based on distribution suffers from insufficient conceptual semantic representation caused by data sparsity,especially for low-frequency words.In knowledge bases,manually annotated semantic knowledge is stable and the essential attributes of words are accurately denoted.In this paper,we propose a Conceptual Semantics Enhanced Word Representation(CEWR)model,computing the synset embedding and hypernym embedding of Chinese words based on the Tongyici Cilin thesaurus,and aggregating it with distributed word representation to have both distributed information and the conceptual meaning encoded in the representation of words.We evaluate the CEWR model on two tasks:word similarity computation and short text classification.The Spearman correlation between model results and human judgement are improved to 64.71%,81.84%,and 85.16%on Wordsim297,MC30,and RG65,respectively.Moreover,CEWR improves the F1 score by 3%in the short text classification task.The experimental results show that CEWR can represent words in a more informative approach than distributed word embedding.This proves that conceptual semantics,especially hypernymous information,is a good complement to distributed word representation. 展开更多
关键词 Word representation conceptual semantics hypernymy similarity computation short text classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部