Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i...Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.展开更多
This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying ...This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying disturbances. A fuzzy-neural disturbance observer is developed to estimate uncertainties and disturbances, and the adaptive controller is synthesized by the dynamic surface approach combing with the observer. The tracking error at the steady state can be guaranteed to converge to inside of a small residue set which the size of the set can be an arbitrary small value. Simulation results demonstrate the effectiveness of the presented approach.展开更多
This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower a...This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower and upper bounds of the time-varying delay,the non-fragile controller is designed such that the resulting closed-loop system is asymptotically stable and satisfies a prescribed performance cost index.The simulation results are given to show the effectiveness of the proposed control method,which is validated by excellent output reference altitude and velocity tracking performance.展开更多
To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)co...To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.展开更多
A coupling frame of speed gain and maintain was suggested to assess the flight performance of hypersonic cruise vehicles(HCV).The optimal cruise speed was obtained by analyzing the flight performance measured by the r...A coupling frame of speed gain and maintain was suggested to assess the flight performance of hypersonic cruise vehicles(HCV).The optimal cruise speed was obtained by analyzing the flight performance measured by the ratio of initial boost mass to generalized payload.The performance of HCVs based on rockets and air-breathing ramjets was studied and compared to that of a minimum-energy ballistic trajectory under a certain flight distance.It is concluded that rocket-based HCVs flying at the optimal speed are a very competitive choice at the current stage.展开更多
This paper proposes a novel neural adaptive performance-constrained synchronization tracking control algorithm for multiple hypersonic flight vehicles(HFVs),which are subject to actuator faults and full-state constrai...This paper proposes a novel neural adaptive performance-constrained synchronization tracking control algorithm for multiple hypersonic flight vehicles(HFVs),which are subject to actuator faults and full-state constraints.The proposed method is based on advanced Lyapunov finite-time stability theory and a sophisticated backstepping design scheme.The longitudinal model of HFV is converted into velocity and altitude subsystems through functional decomposition.Our method presents three significant contributions over the existing state-of-the-art approaches:(a)ensuring finite-time convergence of HFVs systems by guaranteeing that the setting time is lower bounded by a positive constant that is related to the initial states;(b)utilizing a tan-type Barrier Lyapunov function(BLF)to ensure that the synchronization tracking errors of velocity,altitude,flight path angle,angle of attack,and pitch angle rate are maintained within certain performance bounds;and(c)designing a neural adaptive control algorithm and adaptive parameter laws by combining the backstepping design technique and radial basisfunction neural networks(RBFNNs)to handle unknown actuator faults and modeling uncer-tainties.Finally,comparative simulations are conducted to validate the efficacy of the proposed scheme.展开更多
We investigate couplings between variables of attitude dynamics for a hypersonic aircraft,and present a nonlinear robust coordinated control scheme for it.First,we design three kinds of coordinated factors to restrain...We investigate couplings between variables of attitude dynamics for a hypersonic aircraft,and present a nonlinear robust coordinated control scheme for it.First,we design three kinds of coordinated factors to restrain the strong couplings.Then,we use projection mapping to estimate the uncertain nonlinear functions of the aircraft.Combining the coordinated factors and the designed control laws,we obtain a coordinated torque and assign it to the control deflection commands by using the allocation matrix.A stability analysis demonstrates that all the signals of the closed-loop system are uniformly and fully bounded.Finally,the robust coordinated performance of the designed scheme is verified through numerical simulations.展开更多
基金Supported by the Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.
基金supported by the National Natural Science Foundation of China(6110407361104123)the China Postdoctoral Science Foundation(201003548)
文摘This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying disturbances. A fuzzy-neural disturbance observer is developed to estimate uncertainties and disturbances, and the adaptive controller is synthesized by the dynamic surface approach combing with the observer. The tracking error at the steady state can be guaranteed to converge to inside of a small residue set which the size of the set can be an arbitrary small value. Simulation results demonstrate the effectiveness of the presented approach.
基金supported by the National Natural Science Foundation of China(6082530390916005)+3 种基金the Aviation Science Fund of China (2009ZA77001)the Foundation for the Author of National Excellent Doctoral Dissertation of China(2007B4)the Key Laboratory Opening Funding(HIT.KLOF.2009099)the Key Laboratory of Integrated Automation for the Process Industry(Northeastern University),Ministry of Education
文摘This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower and upper bounds of the time-varying delay,the non-fragile controller is designed such that the resulting closed-loop system is asymptotically stable and satisfies a prescribed performance cost index.The simulation results are given to show the effectiveness of the proposed control method,which is validated by excellent output reference altitude and velocity tracking performance.
基金supported in part by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)the Fundamental Research Funds for the Central Universities(No.NZ2015206)
文摘To solve the flight control problem for unmanned hypersonic vehicles,a novel intelligent optimized control method is proposed.A flight control system based on integral separated proportional-integral-derivative(PID)control is designed for hypersonic vehicle,and an improved shuffled frog leaping algorithm is presented to optimize the control parameters.A nonlinear model of hypersonic vehicle is established to examine the dynamic characteristics achieved by the flight control system.Simulation results demonstrate that the proposed optimized controller can effectively achieve better flight control performance than the traditional controller.
基金supported by the National Natural Science Foundation of China(Grant No.10921062)
文摘A coupling frame of speed gain and maintain was suggested to assess the flight performance of hypersonic cruise vehicles(HCV).The optimal cruise speed was obtained by analyzing the flight performance measured by the ratio of initial boost mass to generalized payload.The performance of HCVs based on rockets and air-breathing ramjets was studied and compared to that of a minimum-energy ballistic trajectory under a certain flight distance.It is concluded that rocket-based HCVs flying at the optimal speed are a very competitive choice at the current stage.
文摘This paper proposes a novel neural adaptive performance-constrained synchronization tracking control algorithm for multiple hypersonic flight vehicles(HFVs),which are subject to actuator faults and full-state constraints.The proposed method is based on advanced Lyapunov finite-time stability theory and a sophisticated backstepping design scheme.The longitudinal model of HFV is converted into velocity and altitude subsystems through functional decomposition.Our method presents three significant contributions over the existing state-of-the-art approaches:(a)ensuring finite-time convergence of HFVs systems by guaranteeing that the setting time is lower bounded by a positive constant that is related to the initial states;(b)utilizing a tan-type Barrier Lyapunov function(BLF)to ensure that the synchronization tracking errors of velocity,altitude,flight path angle,angle of attack,and pitch angle rate are maintained within certain performance bounds;and(c)designing a neural adaptive control algorithm and adaptive parameter laws by combining the backstepping design technique and radial basisfunction neural networks(RBFNNs)to handle unknown actuator faults and modeling uncer-tainties.Finally,comparative simulations are conducted to validate the efficacy of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Nos.61773204,61374212)
文摘We investigate couplings between variables of attitude dynamics for a hypersonic aircraft,and present a nonlinear robust coordinated control scheme for it.First,we design three kinds of coordinated factors to restrain the strong couplings.Then,we use projection mapping to estimate the uncertain nonlinear functions of the aircraft.Combining the coordinated factors and the designed control laws,we obtain a coordinated torque and assign it to the control deflection commands by using the allocation matrix.A stability analysis demonstrates that all the signals of the closed-loop system are uniformly and fully bounded.Finally,the robust coordinated performance of the designed scheme is verified through numerical simulations.