In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight tech...In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.展开更多
A flow control method based on an active jet is developed to restart hypersonic inlets. The dynamic restarting process is numerically reproduced by unsteady Reynolds averaged Navier-Stokes(RANS) modeling to verify the...A flow control method based on an active jet is developed to restart hypersonic inlets. The dynamic restarting process is numerically reproduced by unsteady Reynolds averaged Navier-Stokes(RANS) modeling to verify the effectiveness and reveal the influence of jet conditions. The active jet improves the inlet unstart status by drawing the high-pressure separation bubble from the internal compression duct and performing a full expansion to alleviate the adverse pressure gradient. Moreover, the favorable pressure gradient in the inlet caused by jet expansion allows for a successful restart after turning off the jet. The influence of the jet momentum ratio is then analyzed to guide the design of the active jet control method and choose the proper momentum ratios. A low jet momentum does not eliminate the high-pressure separation bubble, whereas an excessive jet momentum causes severe momentum loss due to the induced shock. The general rule in restarting the inlet using an active jet is to allow a full jet expansion downstream of the jet slot while avoiding excessive momentum loss upstream and preventing the thick low-speed layer.展开更多
A numerical study has been carried out to investigate the full flow path and aerodynamic characteristics of a hypersonic vehicle at a 7.0 free stream Mach number. Results indicate that the inlet started and unstarted ...A numerical study has been carried out to investigate the full flow path and aerodynamic characteristics of a hypersonic vehicle at a 7.0 free stream Mach number. Results indicate that the inlet started and unstarted operations have remarkable effects on the flow pattern of the full flow path. When the inlet operates in a started mode, the transverse pressure gradient generated by the forebody alters the air captured characteristics and the entering flow quality of the inlet. Furthermore, the expansion process of the nozzle jet flow is obviously affected by the external flow field around the afterbody with the cross section shape transiting from a near rectangle at the exit of the nozzle to a near triangle at the tail of the vehicle. When the inlet operates in an unstarted mode, the aerodynamic instability can be observed in the full flow path of the vehicle. Due to the oscillation of the external compressed shock wave and nozzle jet flow, the aerodynamic characteristics of the vehicle vary periodically with the lift-drag ratio changing from 0.25 to 2.09. Finally, by comparing to the experimental data, the reliability of the CFD is verified.展开更多
The interaction of cowl shock wave and boundary layer has a crucial effect on the stability,operability and performance of hypersonic inlets.Many studies on inhibiting the sep-aration and managing the strength of the ...The interaction of cowl shock wave and boundary layer has a crucial effect on the stability,operability and performance of hypersonic inlets.Many studies on inhibiting the sep-aration and managing the strength of the interaction of the shock wave and boundary layer with expansion corner have been conducted.However,the expansion waves near the circular arc shoulder to effectively control the interaction and cowl shock arrangement is little investigated.Therefore,the interaction of the cowl shock wave and boundary layer under thefluence of the expansion waves is studied by inviscid and viscous numerical simulations.The results reveal that the expansion waves have an important impact on the interaction between the cowl shock wave and boundary layer and the strength of shock wave,and that there are four types of inter-action processes with the change of the relative impingement positions of cowl shock wave.The expansion waves have a different influence on the shock wave and boundary layer inter-action at different incident points.When the incident point of the cowl shock wave goes far downstream from the end of the circular arc shoulder,the influence of expansion waves is weakened,and the magnitude of separation zone increases.However,when the expansion waves are applied to the interaction of the cowl shock wave and boundary layer on the circular arc shoulder,the separation can be effectively controlled.In particular,while the expansion waves interact with the shock wave and boundary layer in the back half of the circular arc shoulder,the separation is best inhibited.Compared with the upstream and downstream inci-dent points,the scale of separation area in the optimal control region is reduced by 65.3%at most.Furthermore,the total pressure recovery coefficientfirst increases and then decreases when the cowl moves from upstream to downstream,and the total pressure recovery coefficient reaches the maximum value of 68.36%at the incident position of cowl shock wave d Z 8.09d0.展开更多
The unstarted flow field in a hypersonic inlet model at a design point of Ma 6 is studied experimentally.The time-resolved spatial flow characteristics of the separation shock oscillation,which is induced by the unsta...The unstarted flow field in a hypersonic inlet model at a design point of Ma 6 is studied experimentally.The time-resolved spatial flow characteristics of the separation shock oscillation,which is induced by the unstarted flow,are analyzed based on a high-speed Schlieren system and an image processing method.The motion of the separation shock detected by the shock-detection algorithm is compared to the results of fast-response wall-pressure measurements,and good agreement is demonstrated by comparing the frequency components in the power spectral density contours between shock oscillation and pressure fluctuation.The hysteresis of the pressure and separation shock during oscillation cycles is observed from the time history of the shock motion,which means that the unsteady flow pattern of the unstarted hypersonic flow can be accurately clarified by time-resolved Schlieren image processing.These results convincingly demonstrate that the shock-detection technique is successfully applied to an unstarted hypersonic flow case.展开更多
Three kinds of forebody model of hypersonic vehicles were studied with numerical simulation method. It shows that the two-order compressive ramp model is the best selection among the three for its good evaluative para...Three kinds of forebody model of hypersonic vehicles were studied with numerical simulation method. It shows that the two-order compressive ramp model is the best selection among the three for its good evaluative parameters value at the cowl of the inlet. This model can provide higher value of flux coefficient and total pressure recovery coefficient and lower average Mach number compared with those of the other two models. Simultaneously different compressive angles may have different effects. The configuration which the first-order of compressive angle is 4° and the second 5° is the optimum combination. Furthermore factors such as attack angle were concerned. Better result may be obtained with a range of attack angles. Based on the work above the integrated design for forebody/inlet of a hypersonic vehicle was performed. The numerical result shows that this integrated model provides good flow field quality for inlet and engine work.展开更多
A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technolog...A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technology of stream tracing and shock cutting.Comparison between the newly designed inlet and a typical sidewall compression inlet is given.The design Mach number and entrance shape of this new inlet are chosen according to the sidewall compression inlet.Numerical results show that most of the performance parameters of the internal waverider inlet are a bit higher than the sidewall inlet,such as the flow capture coefficient,total pressure recovery and the kinetic efficiency.The performances of these two inlets at off-design points are compared.The internal waverider inlet can capture more than 91% of incoming flow under all simulated conditions.Results show that internal waverider inlet using 3-D compression and high flow capture coefficient is a kind of fixed-geometry inlet with better performance.展开更多
A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream ma...A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream mass. On the basis of the association between hypersonic waverider airframe and streamtraced hypersonic inlet, the waverider concept is extended to yield results for the internal flows, namely internal waverider concept. It is proven theoretically that not osculating cones but osculating axisymmetric theory is appropriate for the design of section controllable internal waverider inlet. And two design methods out of the internal waverider concept are proposed subsequently to construct two inlets with specific section shape request, triangle to ellipse and rectangle to ellipse ones. The calculation results show that the inlets are capable of keeping their shock structures and the main flow characteristics exactly as their derived flowfield. Further, the inlets successfully capture all the upstream mass despite their complicated cross-section transitions. It is believed that the concept proposed ex- plores a new way of designing three-dimensional hypersonic inlets with special demand of section shape transition. However, the detailed flow characteristic and the performance of the internal waverider inlets are still under investigation.展开更多
Numerical simulations and experiments showed that bump inlet had a remarkable effect on boundary layer diversion of supersonic flow.However,the design and analysis of bump in hypersonic flow was still few.In this pape...Numerical simulations and experiments showed that bump inlet had a remarkable effect on boundary layer diversion of supersonic flow.However,the design and analysis of bump in hypersonic flow was still few.In this paper,the mechanism of a supersonic bump inlet is introduced to the design of hypersonic forebody.A hypersonic inlet with an integrated bump/forebody is obtained by the Method Of Characteristics(MOC)based on a chin inlet.Numerical simulations show that the modified inlet achieves diversion of low-speed flow.Besides,the integrated bump/-forebody is also beneficial to inlet start.During the starting process,the shape of the separation zone is rebuilt by the modified forebody surface which makes spillage much easier.This new design leads to a reduction of the self-start Mach number by 0.95.展开更多
The impulse and self starting characteristics of a mixed-compression hypersonic inlet designed at Mach number of 6.5 are studied by applying the unsteady computational fluid dynamics (CFD) method. The full Navier–S...The impulse and self starting characteristics of a mixed-compression hypersonic inlet designed at Mach number of 6.5 are studied by applying the unsteady computational fluid dynamics (CFD) method. The full Navier–Stokes equations are solved with the assumption of viscous perfect gas model, and the shear-stress transport (SST) k–x two-equation Reynolds averaged Navier– Stokes (RANS) model is used for turbulence modeling. Results indicate that during impulse starting, the flow field is divided into three zones with different aerodynamic parameters by primary shock and upstream-facing shock. The separation bubble on the shoulder of ramp undergoes a generating, growing, swallowing and disappearing process in sequence. But a separation bubble at the entrance of inlet exists until the freestream velocity is accelerated to the starting Mach number during self starting. The mass flux distribution of flow field is non-uniform because of the interaction between shock and boundary layer, so that the mass flow rate at throat is unsteady during impulse starting. The duration of impulse starting process increases almost linearly with the decrease of freestream Mach number but rises abruptly when the freestream Mach number approaches the starting Mach number. The accelerating performance of booster almost has no influence on the self starting ability of hypersonic inlet.展开更多
基金supported by the Foundation of Shanghai Aerospace Science and Technology(SAST2016077)。
文摘In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper.
基金supported by the National Key Research and Development Program of China (No.2021YFA0719204)the National Natural Science Foundation of China (No.12272387)。
文摘A flow control method based on an active jet is developed to restart hypersonic inlets. The dynamic restarting process is numerically reproduced by unsteady Reynolds averaged Navier-Stokes(RANS) modeling to verify the effectiveness and reveal the influence of jet conditions. The active jet improves the inlet unstart status by drawing the high-pressure separation bubble from the internal compression duct and performing a full expansion to alleviate the adverse pressure gradient. Moreover, the favorable pressure gradient in the inlet caused by jet expansion allows for a successful restart after turning off the jet. The influence of the jet momentum ratio is then analyzed to guide the design of the active jet control method and choose the proper momentum ratios. A low jet momentum does not eliminate the high-pressure separation bubble, whereas an excessive jet momentum causes severe momentum loss due to the induced shock. The general rule in restarting the inlet using an active jet is to allow a full jet expansion downstream of the jet slot while avoiding excessive momentum loss upstream and preventing the thick low-speed layer.
基金National Nature Science Foundation of China (5060601)
文摘A numerical study has been carried out to investigate the full flow path and aerodynamic characteristics of a hypersonic vehicle at a 7.0 free stream Mach number. Results indicate that the inlet started and unstarted operations have remarkable effects on the flow pattern of the full flow path. When the inlet operates in a started mode, the transverse pressure gradient generated by the forebody alters the air captured characteristics and the entering flow quality of the inlet. Furthermore, the expansion process of the nozzle jet flow is obviously affected by the external flow field around the afterbody with the cross section shape transiting from a near rectangle at the exit of the nozzle to a near triangle at the tail of the vehicle. When the inlet operates in an unstarted mode, the aerodynamic instability can be observed in the full flow path of the vehicle. Due to the oscillation of the external compressed shock wave and nozzle jet flow, the aerodynamic characteristics of the vehicle vary periodically with the lift-drag ratio changing from 0.25 to 2.09. Finally, by comparing to the experimental data, the reliability of the CFD is verified.
基金supported by the Project 1912,the National Natural Science Foundation of China (Grant Nos.52125603 and 11972139)the Fundamental Research Funds for the Central Universities (HIT.BRET.2021006 and FRFCU5710094620).
文摘The interaction of cowl shock wave and boundary layer has a crucial effect on the stability,operability and performance of hypersonic inlets.Many studies on inhibiting the sep-aration and managing the strength of the interaction of the shock wave and boundary layer with expansion corner have been conducted.However,the expansion waves near the circular arc shoulder to effectively control the interaction and cowl shock arrangement is little investigated.Therefore,the interaction of the cowl shock wave and boundary layer under thefluence of the expansion waves is studied by inviscid and viscous numerical simulations.The results reveal that the expansion waves have an important impact on the interaction between the cowl shock wave and boundary layer and the strength of shock wave,and that there are four types of inter-action processes with the change of the relative impingement positions of cowl shock wave.The expansion waves have a different influence on the shock wave and boundary layer inter-action at different incident points.When the incident point of the cowl shock wave goes far downstream from the end of the circular arc shoulder,the influence of expansion waves is weakened,and the magnitude of separation zone increases.However,when the expansion waves are applied to the interaction of the cowl shock wave and boundary layer on the circular arc shoulder,the separation can be effectively controlled.In particular,while the expansion waves interact with the shock wave and boundary layer in the back half of the circular arc shoulder,the separation is best inhibited.Compared with the upstream and downstream inci-dent points,the scale of separation area in the optimal control region is reduced by 65.3%at most.Furthermore,the total pressure recovery coefficientfirst increases and then decreases when the cowl moves from upstream to downstream,and the total pressure recovery coefficient reaches the maximum value of 68.36%at the incident position of cowl shock wave d Z 8.09d0.
基金supported by National Natural Science Foundation of China (Nos. 51776096 and 51476076)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The unstarted flow field in a hypersonic inlet model at a design point of Ma 6 is studied experimentally.The time-resolved spatial flow characteristics of the separation shock oscillation,which is induced by the unstarted flow,are analyzed based on a high-speed Schlieren system and an image processing method.The motion of the separation shock detected by the shock-detection algorithm is compared to the results of fast-response wall-pressure measurements,and good agreement is demonstrated by comparing the frequency components in the power spectral density contours between shock oscillation and pressure fluctuation.The hysteresis of the pressure and separation shock during oscillation cycles is observed from the time history of the shock motion,which means that the unsteady flow pattern of the unstarted hypersonic flow can be accurately clarified by time-resolved Schlieren image processing.These results convincingly demonstrate that the shock-detection technique is successfully applied to an unstarted hypersonic flow case.
文摘Three kinds of forebody model of hypersonic vehicles were studied with numerical simulation method. It shows that the two-order compressive ramp model is the best selection among the three for its good evaluative parameters value at the cowl of the inlet. This model can provide higher value of flux coefficient and total pressure recovery coefficient and lower average Mach number compared with those of the other two models. Simultaneously different compressive angles may have different effects. The configuration which the first-order of compressive angle is 4° and the second 5° is the optimum combination. Furthermore factors such as attack angle were concerned. Better result may be obtained with a range of attack angles. Based on the work above the integrated design for forebody/inlet of a hypersonic vehicle was performed. The numerical result shows that this integrated model provides good flow field quality for inlet and engine work.
文摘A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technology of stream tracing and shock cutting.Comparison between the newly designed inlet and a typical sidewall compression inlet is given.The design Mach number and entrance shape of this new inlet are chosen according to the sidewall compression inlet.Numerical results show that most of the performance parameters of the internal waverider inlet are a bit higher than the sidewall inlet,such as the flow capture coefficient,total pressure recovery and the kinetic efficiency.The performances of these two inlets at off-design points are compared.The internal waverider inlet can capture more than 91% of incoming flow under all simulated conditions.Results show that internal waverider inlet using 3-D compression and high flow capture coefficient is a kind of fixed-geometry inlet with better performance.
基金Supported by the National Natural Science Foundation of China(Grant No.90405009)
文摘A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream mass. On the basis of the association between hypersonic waverider airframe and streamtraced hypersonic inlet, the waverider concept is extended to yield results for the internal flows, namely internal waverider concept. It is proven theoretically that not osculating cones but osculating axisymmetric theory is appropriate for the design of section controllable internal waverider inlet. And two design methods out of the internal waverider concept are proposed subsequently to construct two inlets with specific section shape request, triangle to ellipse and rectangle to ellipse ones. The calculation results show that the inlets are capable of keeping their shock structures and the main flow characteristics exactly as their derived flowfield. Further, the inlets successfully capture all the upstream mass despite their complicated cross-section transitions. It is believed that the concept proposed ex- plores a new way of designing three-dimensional hypersonic inlets with special demand of section shape transition. However, the detailed flow characteristic and the performance of the internal waverider inlets are still under investigation.
文摘Numerical simulations and experiments showed that bump inlet had a remarkable effect on boundary layer diversion of supersonic flow.However,the design and analysis of bump in hypersonic flow was still few.In this paper,the mechanism of a supersonic bump inlet is introduced to the design of hypersonic forebody.A hypersonic inlet with an integrated bump/forebody is obtained by the Method Of Characteristics(MOC)based on a chin inlet.Numerical simulations show that the modified inlet achieves diversion of low-speed flow.Besides,the integrated bump/-forebody is also beneficial to inlet start.During the starting process,the shape of the separation zone is rebuilt by the modified forebody surface which makes spillage much easier.This new design leads to a reduction of the self-start Mach number by 0.95.
文摘The impulse and self starting characteristics of a mixed-compression hypersonic inlet designed at Mach number of 6.5 are studied by applying the unsteady computational fluid dynamics (CFD) method. The full Navier–Stokes equations are solved with the assumption of viscous perfect gas model, and the shear-stress transport (SST) k–x two-equation Reynolds averaged Navier– Stokes (RANS) model is used for turbulence modeling. Results indicate that during impulse starting, the flow field is divided into three zones with different aerodynamic parameters by primary shock and upstream-facing shock. The separation bubble on the shoulder of ramp undergoes a generating, growing, swallowing and disappearing process in sequence. But a separation bubble at the entrance of inlet exists until the freestream velocity is accelerated to the starting Mach number during self starting. The mass flux distribution of flow field is non-uniform because of the interaction between shock and boundary layer, so that the mass flow rate at throat is unsteady during impulse starting. The duration of impulse starting process increases almost linearly with the decrease of freestream Mach number but rises abruptly when the freestream Mach number approaches the starting Mach number. The accelerating performance of booster almost has no influence on the self starting ability of hypersonic inlet.