It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases ...It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.展开更多
Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational resul...Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational results show that the absorption and emission properties of these probes change obviously when they react with hypochlorous acid. It is found that the probe FHZ has the best performance according to the probing behavior. Moreover, the responsive mechanisms of the probes are studied by analyzing the distributions of molecular orbitals and charge transfer, which are shown as the photon- induced electron transfer (PET) for FHZ and the intramolecular charge transfer OCT) for the other two probes. Specially, solvent effect on optical properties of the probe FHZ before and after reaction is studied within the polarizable continuum model (PCM). It is shown that performance of the probe depends crucially on the solvent polarity. Our computational results agree well with the experimental measurement, and provide information for design of efficient two-photon fluorescent probes.展开更多
Recent studies revealed that the increased level of hypochlorous acid(HOCl)may be deemed to be one of the signs of chronic inflammatory joint disease.Accordingly,the development of effective methods for rapid and accu...Recent studies revealed that the increased level of hypochlorous acid(HOCl)may be deemed to be one of the signs of chronic inflammatory joint disease.Accordingly,the development of effective methods for rapid and accurate detection or monitoring of HOCl in vivo is of great significance for further understanding the role of HOCl in rheumatoid arthritis(RA).Herein,a ratiometric near-infrared(NIR)fluorescent probe(PTA)was reported for the detection and monitoring of HOCl.In the presence of HOCl,the electron-rich S atom and C=C double bond of probe PTA were oxidized in sequence,resulting in the significant hypochromatic shift and decline of absorption spectra.Simultaneously,the intramolecular charge transfer(ICT)process of PTA is inhibited,causing the intrinsic fluorescence emission of PTA shift from 680 to 550 nm.PTA-based test paper strips were successfully prepared and applied to determinate HOCl in actual water samples by“naked eye”colorimetric method.PTA features NIR emission,large Stokes shift(200 nm),low cytotoxicity,high sensitivity(33.9 nM),and short response time(45 s),which enable it to be successfully utilized for imaging endogenous and exogenous HOCl in living zebrafish and mice.More importantly,PTA shows remarkable effectiveness for the monitoring of HOCl-mediated treatment response to RA.Consequently,PTA provides a new approach to further understand the role of HOCl in RA and evaluate the drug treatment efficiency of RA.展开更多
Hypochlorous acid (HOCl) is a strong oxidant produced by activated neutrophils via the myeloperoxidase (MPO) enzyme in order to fight against infections. Because of their antimicrobial and antiviral properties, stabil...Hypochlorous acid (HOCl) is a strong oxidant produced by activated neutrophils via the myeloperoxidase (MPO) enzyme in order to fight against infections. Because of their antimicrobial and antiviral properties, stabilized HOCl solutions were produced to be used as a disinfectant and became a recommended disinfectant against COVID-19 by the US Environmental Protection Agency. Aberrant MPO enzyme activity results in abundant HOCl production which is related to the development and/or progression of several diseases including atherosclerosis, cardiovascular and neurodegenerative diseases. Previous studies investigating the effect of HOCl on the mode of cell death in different cell types reported that HOCl induces both apoptosis and necrosis depending on its concentration. However, the data on the apoptotic pathway triggered by HOCl is controversial. In this study, we investigated the <span><span style="font-family:Verdana;">mode of cell death induced by different concentrations of HOCl in <i></i></span><i><i><span style="font-family:Verdana;">Saccharomyces</span></i></i></span><i><i><span style="font-family:Verdana;"> cerevisiae</span></i><span style="font-family:Verdana;"></span></i>. Our data revealed that HOCl leads to cell death within 1 minute at 170 <span style="line-height:102%;font-family:Verdana;">μ</span><span style="font-family:Verdana;">M and above. At 340 </span><span style="line-height:102%;font-family:Verdana;">μ</span><span style="font-family:Verdana;">M, HOCl causes a rapid necrosis, while 170 μM HOCl leads to apoptosis. HOCl-induced apoptosis is mostly caspase dependent and Aif1 doesn’t have a significant role.</span>展开更多
Background: Septic open abdomens occur in trauma, burn and surgery. Currently, multiple concentrations of hypochlorous acid solutions have effectively decreased the microbiotic burden in wounds. We hypothesized that V...Background: Septic open abdomens occur in trauma, burn and surgery. Currently, multiple concentrations of hypochlorous acid solutions have effectively decreased the microbiotic burden in wounds. We hypothesized that Vashe?, a neutral hypochlorous acid solution (V-HOCL), would be safe as an intraperitoneal irrigation or washout disinfectant for septic open abdomens utilizing negative pressure wound therapy. Methods: This is a retrospective observational review of patients who required delayed abdominal closures after exploratory laparotomies. Group A (n = 8) had cyclical V-HOCL irrigation to their open abdomens combining AbtheraTM and V.A.C. Dressing System for negative pressure wound therapy with irrigation (NPWT-i) and Group B (n = 9) had intra-abdominal V-HOCL washouts. Results: Fifty percent of both groups had either septic or hemorrhagic shock on admission. Compared to Group B, Group A patients were older (median 50 vs 37 years), and had a median hospitalization of 28 vs 8 days, 4 times as many operations, more acute renal failure and co-morbidities. No statistically significant differences were detected be-tween the two treatment methods with the V-HOCL delivery and removal. Conclusion: There were no episodes of electrolyte imbalance, hypotension, hypertension, anaphylaxis, hemorrhage, visceral injury or systemic toxicity. V-HOCL with/without NPWT-i irrigation was a safe modality and tolerated well in this study.展开更多
Lactic acid bacteria (LAB) are incapable of cytochrome synthesis and lack the heme electron transport mechanisms required for efficient oxygen-based metabolism. Consequently, LAB redox activity is flavoenzyme-based an...Lactic acid bacteria (LAB) are incapable of cytochrome synthesis and lack the heme electron transport mechanisms required for efficient oxygen-based metabolism. Consequently, LAB redox activity is flavoenzyme-based and metabolism is fermentative, producing lactic acid, and in many cases, hydrogen peroxide (H2O2). Despite this seeming metabolic limitation, LAB dominate in the normal flora of the mouth, vagina and lower gastrointestinal tract in man. Myeloperoxidase (MPO) is produced by the neutrophil leukocytes and monocytes that provide the innate phagocyte defense against infecting pathogens. MPO is unique in its ability to catalyze the H2O2-dependent oxidation of chloride (Cl-) to hypochlorite (OCl-). In turn, this OCl- directly reacts with a second H2O2 to produce singlet molecular oxygen (), a metastable electronic excitation state of oxygen with a microsecond lifetime that restricts its combustive reactivity within a submicron radius of its point of generation. Each day a healthy human adult produces about a hundred billion neutrophils containing about 4 femtograms MPO per neutrophil. Inflammatory states and G-CSF treatment increase both neutrophil production and the quantity of MPO per neutrophil. After a short circulating lifetime, neutrophils leave the blood and migrate into body spaces including the mouth, vagina, urinary tract, and gastrointestinal tract. Greater than a hundred thousand neutrophils are lavaged from the mouths of healthy humans;the quantity lavaged is proportional to the blood neutrophil count. MPO selectively and avidly binds to most Gram-positive and all Gram-negative bacteria tested, but LAB do not show significant MPO binding. Neutrophils migrating to normal flora sites release MPO into the LAB-conditioned milieu containing adequate acidity and H2O2 to support extra-phagocyte MPO microbicidal action. In combination, LAB plus MPO exert a potent synergistic microbicidal action against high MPO-binding microbes. This LAB-MPO synergy provides a mechanism for the establishment and maintenance of LAB in the normal flora of man.展开更多
A ratiometric fluorescence probe,NClO,for the rapid and selective detection of HClO had been designed and synthesized based on a 1,8-naphthalimide derivative.Probe NClO displayed a red emission(λmax=615 nm).In the pr...A ratiometric fluorescence probe,NClO,for the rapid and selective detection of HClO had been designed and synthesized based on a 1,8-naphthalimide derivative.Probe NClO displayed a red emission(λmax=615 nm).In the presence of HClO,the solution of probe NClO gave off a strong green fluorescence(λem,max=520 nm)with a rapid response(within seconds).This probe had been applied to image HClO in living cells and zebra fish.展开更多
Hypochlorous acid(HOCl) plays a vital role in many physiological and pathological processes as one of reactive oxygen species(ROS). Developing highly sensitive and selective methods for HOCl detection is of signif...Hypochlorous acid(HOCl) plays a vital role in many physiological and pathological processes as one of reactive oxygen species(ROS). Developing highly sensitive and selective methods for HOCl detection is of significant interest. In this work, we developed a benzothiazole based probe 1 for ratiometric fluorescence detection of hypochlorite in living cells. The probe can detect HOCl with high selectivity, fast response(within 30 s) as well as low detection limit(0.18 mmol/L). Fluorescence co-localization studies demonstrated that probe 1 was a mitochondria-targeted fluorescent probe. Furthermore, confocal fluorescence images of He La cell indicated that probe 1 could be used for monitoring intracellular HOCl in living cells. Finally, test strips experiment suggests that the probe 1 can detect the hypochlorous acid in tap water accompanied by remarkable color change.展开更多
In this study,we developed an eff ective method to detect hypochlorite acid(HClO)by using methylene blue(MB)derivative(BPY1).BPY1 was selectively oxidized through HClO,and the solution color changed from colorless to ...In this study,we developed an eff ective method to detect hypochlorite acid(HClO)by using methylene blue(MB)derivative(BPY1).BPY1 was selectively oxidized through HClO,and the solution color changed from colorless to blue.In the presence of HClO,the ultraviolet–visible(UV–vis)spectra and concentration of HClO had a linear relationship with a detection limit of 0.5μM.Furthermore,a test paper for HClO monitoring was successfully prepared using the BPY1 probe,and the observed detection limit by the naked eye was estimated at 5μM.Additionally,using the BPY1 probe,HClO could also be detected through smartphone colorimetry,and the method showed a good recovery ranging from 98.7 to 104.0%for HClO detection in an actual water sample.Especially for developing countries,such a low-cost and highly sensitive detection method provides a simple and practical method for monitoring HClO in water.展开更多
The pyrolysis treatment of lignites could remove thermal-unstable aliphatic structures but enrich aromatic structures in resulting pyrolysis residues,which would facilitate producing benzene polycarboxylic acids(BPCAs...The pyrolysis treatment of lignites could remove thermal-unstable aliphatic structures but enrich aromatic structures in resulting pyrolysis residues,which would facilitate producing benzene polycarboxylic acids(BPCAs).Herein,the demineralized Zhaotong lignite(DZL)was pyrolyzed at 250-550℃ to afford the corresponding pyrolysis residues.Subsequently,DZL and its pyrolysis residues were subjected to oxidation with aqueous sodium hypochlorite.By XRD,FTIR,and element analyses,it was found that the content and polycondensation degree of aromatic structures simultaneously increased with increasing pyrolysis temperature.Furthermore,the yield and selectivity of BPCAs both increased along with raising pyrolysis temperature in resulting products from fully oxidation of DZL and its pyrolysis residues.Based on the distribution of BPCAs,peri-condensed aromatic structures were dominant in DZL and its DPRs,and obviously increased with increasing pyrolysis temperature.More interestingly,good correlation was found between the yield of BPCAs and aromaticity parameters.Meanwhile,the yield of benzenepentacrboxylic acid was well associated with polycondensation degree parameters.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province of China,No.BK20211348(to SHQ)Xuzhou Basic Research Program,No.KC21030(to LYH)+1 种基金Leadership Program of Xuzhou Medical University,No.JBGS202203(to SHQ)Research Grant Council GRF of Hong Kong Special Administrative Region of China,No.17105220(to JGS)。
文摘It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374195 and 11404193)the Taishan Scholar Program of Shandong Province,China
文摘Optical properties and responsive mechanisms of three newly synthesized fluorescent probes for hypochlorous acid (HOC1) are investigated by employing time-dependent density functional theory. The computational results show that the absorption and emission properties of these probes change obviously when they react with hypochlorous acid. It is found that the probe FHZ has the best performance according to the probing behavior. Moreover, the responsive mechanisms of the probes are studied by analyzing the distributions of molecular orbitals and charge transfer, which are shown as the photon- induced electron transfer (PET) for FHZ and the intramolecular charge transfer OCT) for the other two probes. Specially, solvent effect on optical properties of the probe FHZ before and after reaction is studied within the polarizable continuum model (PCM). It is shown that performance of the probe depends crucially on the solvent polarity. Our computational results agree well with the experimental measurement, and provide information for design of efficient two-photon fluorescent probes.
基金supported by“the Key and General research Project of Education Department of Liaoning Province(LJKZ0277)”“Liaoning BaiQianWan Talents Program.”。
文摘Recent studies revealed that the increased level of hypochlorous acid(HOCl)may be deemed to be one of the signs of chronic inflammatory joint disease.Accordingly,the development of effective methods for rapid and accurate detection or monitoring of HOCl in vivo is of great significance for further understanding the role of HOCl in rheumatoid arthritis(RA).Herein,a ratiometric near-infrared(NIR)fluorescent probe(PTA)was reported for the detection and monitoring of HOCl.In the presence of HOCl,the electron-rich S atom and C=C double bond of probe PTA were oxidized in sequence,resulting in the significant hypochromatic shift and decline of absorption spectra.Simultaneously,the intramolecular charge transfer(ICT)process of PTA is inhibited,causing the intrinsic fluorescence emission of PTA shift from 680 to 550 nm.PTA-based test paper strips were successfully prepared and applied to determinate HOCl in actual water samples by“naked eye”colorimetric method.PTA features NIR emission,large Stokes shift(200 nm),low cytotoxicity,high sensitivity(33.9 nM),and short response time(45 s),which enable it to be successfully utilized for imaging endogenous and exogenous HOCl in living zebrafish and mice.More importantly,PTA shows remarkable effectiveness for the monitoring of HOCl-mediated treatment response to RA.Consequently,PTA provides a new approach to further understand the role of HOCl in RA and evaluate the drug treatment efficiency of RA.
文摘Hypochlorous acid (HOCl) is a strong oxidant produced by activated neutrophils via the myeloperoxidase (MPO) enzyme in order to fight against infections. Because of their antimicrobial and antiviral properties, stabilized HOCl solutions were produced to be used as a disinfectant and became a recommended disinfectant against COVID-19 by the US Environmental Protection Agency. Aberrant MPO enzyme activity results in abundant HOCl production which is related to the development and/or progression of several diseases including atherosclerosis, cardiovascular and neurodegenerative diseases. Previous studies investigating the effect of HOCl on the mode of cell death in different cell types reported that HOCl induces both apoptosis and necrosis depending on its concentration. However, the data on the apoptotic pathway triggered by HOCl is controversial. In this study, we investigated the <span><span style="font-family:Verdana;">mode of cell death induced by different concentrations of HOCl in <i></i></span><i><i><span style="font-family:Verdana;">Saccharomyces</span></i></i></span><i><i><span style="font-family:Verdana;"> cerevisiae</span></i><span style="font-family:Verdana;"></span></i>. Our data revealed that HOCl leads to cell death within 1 minute at 170 <span style="line-height:102%;font-family:Verdana;">μ</span><span style="font-family:Verdana;">M and above. At 340 </span><span style="line-height:102%;font-family:Verdana;">μ</span><span style="font-family:Verdana;">M, HOCl causes a rapid necrosis, while 170 μM HOCl leads to apoptosis. HOCl-induced apoptosis is mostly caspase dependent and Aif1 doesn’t have a significant role.</span>
文摘Background: Septic open abdomens occur in trauma, burn and surgery. Currently, multiple concentrations of hypochlorous acid solutions have effectively decreased the microbiotic burden in wounds. We hypothesized that Vashe?, a neutral hypochlorous acid solution (V-HOCL), would be safe as an intraperitoneal irrigation or washout disinfectant for septic open abdomens utilizing negative pressure wound therapy. Methods: This is a retrospective observational review of patients who required delayed abdominal closures after exploratory laparotomies. Group A (n = 8) had cyclical V-HOCL irrigation to their open abdomens combining AbtheraTM and V.A.C. Dressing System for negative pressure wound therapy with irrigation (NPWT-i) and Group B (n = 9) had intra-abdominal V-HOCL washouts. Results: Fifty percent of both groups had either septic or hemorrhagic shock on admission. Compared to Group B, Group A patients were older (median 50 vs 37 years), and had a median hospitalization of 28 vs 8 days, 4 times as many operations, more acute renal failure and co-morbidities. No statistically significant differences were detected be-tween the two treatment methods with the V-HOCL delivery and removal. Conclusion: There were no episodes of electrolyte imbalance, hypotension, hypertension, anaphylaxis, hemorrhage, visceral injury or systemic toxicity. V-HOCL with/without NPWT-i irrigation was a safe modality and tolerated well in this study.
文摘Lactic acid bacteria (LAB) are incapable of cytochrome synthesis and lack the heme electron transport mechanisms required for efficient oxygen-based metabolism. Consequently, LAB redox activity is flavoenzyme-based and metabolism is fermentative, producing lactic acid, and in many cases, hydrogen peroxide (H2O2). Despite this seeming metabolic limitation, LAB dominate in the normal flora of the mouth, vagina and lower gastrointestinal tract in man. Myeloperoxidase (MPO) is produced by the neutrophil leukocytes and monocytes that provide the innate phagocyte defense against infecting pathogens. MPO is unique in its ability to catalyze the H2O2-dependent oxidation of chloride (Cl-) to hypochlorite (OCl-). In turn, this OCl- directly reacts with a second H2O2 to produce singlet molecular oxygen (), a metastable electronic excitation state of oxygen with a microsecond lifetime that restricts its combustive reactivity within a submicron radius of its point of generation. Each day a healthy human adult produces about a hundred billion neutrophils containing about 4 femtograms MPO per neutrophil. Inflammatory states and G-CSF treatment increase both neutrophil production and the quantity of MPO per neutrophil. After a short circulating lifetime, neutrophils leave the blood and migrate into body spaces including the mouth, vagina, urinary tract, and gastrointestinal tract. Greater than a hundred thousand neutrophils are lavaged from the mouths of healthy humans;the quantity lavaged is proportional to the blood neutrophil count. MPO selectively and avidly binds to most Gram-positive and all Gram-negative bacteria tested, but LAB do not show significant MPO binding. Neutrophils migrating to normal flora sites release MPO into the LAB-conditioned milieu containing adequate acidity and H2O2 to support extra-phagocyte MPO microbicidal action. In combination, LAB plus MPO exert a potent synergistic microbicidal action against high MPO-binding microbes. This LAB-MPO synergy provides a mechanism for the establishment and maintenance of LAB in the normal flora of man.
基金supported by the National Natural Science Foundation of China(No.U1608222)the State Key Laboratory of Fine Chemicals(No.KF1606)the financial support from Fundamental Research Funds for the Central Universities of Central South University(No.2018zzts109)
文摘A ratiometric fluorescence probe,NClO,for the rapid and selective detection of HClO had been designed and synthesized based on a 1,8-naphthalimide derivative.Probe NClO displayed a red emission(λmax=615 nm).In the presence of HClO,the solution of probe NClO gave off a strong green fluorescence(λem,max=520 nm)with a rapid response(within seconds).This probe had been applied to image HClO in living cells and zebra fish.
基金supported by the National Natural Science Foundation of China(Nos.21376117,21406109 and 31401588)the Jiangsu Natural Science Funds for Distinguished Young Scholars(No.BK20140043)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.14KJA150005)the Qing Lan Project and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Hypochlorous acid(HOCl) plays a vital role in many physiological and pathological processes as one of reactive oxygen species(ROS). Developing highly sensitive and selective methods for HOCl detection is of significant interest. In this work, we developed a benzothiazole based probe 1 for ratiometric fluorescence detection of hypochlorite in living cells. The probe can detect HOCl with high selectivity, fast response(within 30 s) as well as low detection limit(0.18 mmol/L). Fluorescence co-localization studies demonstrated that probe 1 was a mitochondria-targeted fluorescent probe. Furthermore, confocal fluorescence images of He La cell indicated that probe 1 could be used for monitoring intracellular HOCl in living cells. Finally, test strips experiment suggests that the probe 1 can detect the hypochlorous acid in tap water accompanied by remarkable color change.
基金the National Natural Science Foundation of China(Nos.U1404215,22074089,21804085,21675109)Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No:41)Key Scientific Research Projects of Colleges and Universities in Henan Province(No:21A150043)for support。
文摘In this study,we developed an eff ective method to detect hypochlorite acid(HClO)by using methylene blue(MB)derivative(BPY1).BPY1 was selectively oxidized through HClO,and the solution color changed from colorless to blue.In the presence of HClO,the ultraviolet–visible(UV–vis)spectra and concentration of HClO had a linear relationship with a detection limit of 0.5μM.Furthermore,a test paper for HClO monitoring was successfully prepared using the BPY1 probe,and the observed detection limit by the naked eye was estimated at 5μM.Additionally,using the BPY1 probe,HClO could also be detected through smartphone colorimetry,and the method showed a good recovery ranging from 98.7 to 104.0%for HClO detection in an actual water sample.Especially for developing countries,such a low-cost and highly sensitive detection method provides a simple and practical method for monitoring HClO in water.
基金supported by the National Natural Science Foundation of China(Grant No.21706172)NSFC-Shanxi joint fund for coal-based low carbon(Grant No.U1610223 and U1710102)+1 种基金Key Research and Development(R&D)Projects of Shanxi Province(201903D321061)State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2021-K79).
文摘The pyrolysis treatment of lignites could remove thermal-unstable aliphatic structures but enrich aromatic structures in resulting pyrolysis residues,which would facilitate producing benzene polycarboxylic acids(BPCAs).Herein,the demineralized Zhaotong lignite(DZL)was pyrolyzed at 250-550℃ to afford the corresponding pyrolysis residues.Subsequently,DZL and its pyrolysis residues were subjected to oxidation with aqueous sodium hypochlorite.By XRD,FTIR,and element analyses,it was found that the content and polycondensation degree of aromatic structures simultaneously increased with increasing pyrolysis temperature.Furthermore,the yield and selectivity of BPCAs both increased along with raising pyrolysis temperature in resulting products from fully oxidation of DZL and its pyrolysis residues.Based on the distribution of BPCAs,peri-condensed aromatic structures were dominant in DZL and its DPRs,and obviously increased with increasing pyrolysis temperature.More interestingly,good correlation was found between the yield of BPCAs and aromaticity parameters.Meanwhile,the yield of benzenepentacrboxylic acid was well associated with polycondensation degree parameters.