期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Low Doses of Ionized Radiation and Hypomagnetic Field Alter Redox Properties of Water and Physiological Characteristics of Seeds of the Highest Plants 被引量:2
1
作者 Svetlana Stepanovna Moisa Vladimir Vladimirovich Tsetlin +1 位作者 Margarita Alexandrovna Levinskich Elena Leonidovna Nefedova 《Journal of Biomedical Science and Engineering》 2016年第8期410-418,共10页
The influence of a 40-fold attenuated geomagnetic field and its combined action with low doses of α- and γ-irradiation on the physiological characteristics of seeds of the highest plants and redox properties of wate... The influence of a 40-fold attenuated geomagnetic field and its combined action with low doses of α- and γ-irradiation on the physiological characteristics of seeds of the highest plants and redox properties of water was investigated. It established the reduction of seed germination both under direct and indirect effects due to water action of attenuated geomagnetic field. A negative effect of hypomagnetic field on grown characteristics of seeds under indirect effect via water was decreased by the low doses of γ-irradiation, and was increased by low doses of α-irradiation, i.e. ionized radiation was the dominant factor in their combined action. It was revealed the increasing of the value of the oxidation-reduction potential of water under the influence of low-intensive α-ir-radiation (239Pu), γ-irradiation (137Cs) and also that the magnetic induction attenuated pointing to a natural decline. The increasing of the oxidation-reduction potential value testifies about “the regular decreasing of internal energy of water molecules” and the increasing of its oxidative properties, which, in our opinion, is caused the inhibition of the germination of seeds. It is supposed that namely water is the main component in the effects of studying factors on bio-objects, which acts due to the alterations of the properties and structural content of water. 展开更多
关键词 α- and γ-Irradiation hypomagnetic Field Oxidation-Reduction Potential of Water Physiological Characteristics of Seeds of the Highest Plants
下载PDF
Effect of Hypomagnetic Field on Water Medium of Living Systems
2
作者 Svetlana Stepanovna Moisa Vladimir Vladimirovich Tsetlin Elena Leonidovna Nefedova 《Journal of Biomedical Science and Engineering》 2019年第12期545-556,共12页
The article represents the generalizing data for the studying of the effect of hypomagnetic field on physico-chemistry properties of water and bio-objects. It was revealed the changing state of water: increasing of it... The article represents the generalizing data for the studying of the effect of hypomagnetic field on physico-chemistry properties of water and bio-objects. It was revealed the changing state of water: increasing of its oxidation-reduction potential and oxidative properties as magnetic induction attenuated pointing to a natural decline, that testifies about the regular decreasing of internal energy of water molecules, which, in our opinion, is caused the inhibition of the germination of seeds of the highest plants, embryonic development of Planorbarius corneus and the changing of energy state of growing mediums for cell culture of mammals. It is supposed that namely the changing state of water is the main component in the effects of weakening of magnetic field on the studying bio-objects. 展开更多
关键词 hypomagnetic FIELD Water MEDIUM Oxidation-Reduction PROPERTIES LIVING Systems
下载PDF
Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase 被引量:10
3
作者 Hai-tao Zhang Zi-jian Zhang +5 位作者 Wei-chuan Mo Ping-dong Hu Hai-min Ding Ying Liu Qian Hua Rong-qiao He 《Protein & Cell》 SCIE CAS CSCD 2017年第7期527-537,共11页
Accumulative evidence has shown the adverse effects of a geomagnetic field shielded condition, so called a hypomagnetic field (HMF), on the metabolic processes and oxidative stress in animals and cells. However, the... Accumulative evidence has shown the adverse effects of a geomagnetic field shielded condition, so called a hypomagnetic field (HMF), on the metabolic processes and oxidative stress in animals and cells. However, the underlying mechanism remains unclear. In this study, we evaluate the role of HMF on the regulation of cellular reactive oxygen species (ROS) in human neuroblastoma SH-SY5Y cells. We found that HMF exposure led to ROS decrease, and that restoring the decrease by additional H2O2 rescued the HMF-enhanced cell proliferation. The measurements on ROS related indexes, including total anti-oxidant capacity, H2O2 and superoxide anion levels, and superoxide dismutase (SOD) activity and expres- sion, indicated that the HMF reduced H2O2 production and inhibited the activity of CuZn-SOD. Moreover, the HMF accelerated the denaturation of CuZn-SOD as well as enhanced aggregation of CuZn-SOD protein, in vitro. Our findings indicate that CuZn-SOD is able to response to the HMF stress and suggest it a mediator of the HMF effect. 展开更多
关键词 hypomagnetic field reactive oxygenspecies hydrogen peroxide superoxide dismutase oxidative stress
原文传递
Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells 被引量:4
4
作者 Jing-Peng Fu Wei-Chuan Mo +2 位作者 Ying Liu Perry F. Bartlett Rong-Qiao He 《Protein & Cell》 SCIE CAS CSCD 2016年第9期624-637,共14页
Living organisms are exposed to the geomagnetic field (GMF) throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF), leads to central nervous system dysfunction and abnormal d... Living organisms are exposed to the geomagnetic field (GMF) throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF), leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mecha-nisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (〈200 nT), produced by a magnetic field shielding chamber, pro- motes the proliferation of neural progenitor/stem cells (NPCslNSCs) from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs) were significantly larger in size, and twice more NPCslNSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multi- potency of the NSs were maintalned, as HMF-exposed NSs were posltlve for NSC markers (Nestin and Sox2), and could differentiate into neurons and astrocytelglial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells In the subventrlcular zone. These flndlngs indicate that continuous HMF-exposure increases the proliferation of NPCslNSCs, In vitro and in vlvo. HMF-dlsturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio.HMF response. 展开更多
关键词 hypomagnetic field neural progenitor/stemcells NEUROSPHERE PROLIFERATION STERNNESS MULTIPOTENCY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部