DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-bu...DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.展开更多
AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the p...AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 ℃. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; p H of the perfusate was also evaluated; Hi F-1α m RNA and protein expression were analyzed by real time-polymerase chain reaction and ELi SA, respectively. RESULTS: Livers perfused at 10 and 20 ℃ showed no difference in lactate dehydrogenase release after 6 h of perfusion(0.96 ± 0.23 vs 0.93 ± 0.09 m U/min per g) and had lower hepatic damage as compared to 30 and 37 ℃(5.63 ± 0.76 vs 527.69 ± 45.27 m U/min per g, respectively, P s < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 ℃than in livers perfused at 30 and 37 ℃(0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, P s < 0.01). No sign of hypoxia was observed at 10 and 20 ℃, as highlighted by low lactate release respect to livers perfused at 30 and 37 ℃(121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/m L, respectively, P s < 0.02), and low relative Hi F-1α m RNA(0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, P s < 0.05) and protein(3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, P s < 0.05) expression.CONCLUSION: Livers perfused at 10 and 20 ℃ show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 ℃.展开更多
The molecular basis for enhanced chemosensitivity of testicular germ cell tumors (GCT) has been an area of great interest, as it could potentially give us therapeutic leads in other resistant malignancies. Thus far,...The molecular basis for enhanced chemosensitivity of testicular germ cell tumors (GCT) has been an area of great interest, as it could potentially give us therapeutic leads in other resistant malignancies. Thus far, however, the increased sensitivity of C&T has been variously attributed to multiple factors -- an inability to detoxify cisplatin, a lack of export pumps, an inability to repair the DNA damage, an intact apoptotic cascade and lack of p53 mutation; but a unifying underlying etiology leading to the aforementioned processes and having a translational implication has so far been elusive. Herein, we offer evidence to support a potential significant role for the previously demonstrated low hypoxia inducible factor-la (HIF-la) expression in mediating the general exquisite chemosensitivity of testicular GCT, through the aforementioned processes. This molecular mechanism based hypothesis could have a significant translational implication in platinum refractory GCT as well as other platinum resistant malignancies.展开更多
文摘DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.
基金Supported by Grant from Fondazione Cariplo,No.2011-0439
文摘AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion. METHODS: in this study, we correlated hypoxia induciblefactor(Hi F)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 ℃. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; p H of the perfusate was also evaluated; Hi F-1α m RNA and protein expression were analyzed by real time-polymerase chain reaction and ELi SA, respectively. RESULTS: Livers perfused at 10 and 20 ℃ showed no difference in lactate dehydrogenase release after 6 h of perfusion(0.96 ± 0.23 vs 0.93 ± 0.09 m U/min per g) and had lower hepatic damage as compared to 30 and 37 ℃(5.63 ± 0.76 vs 527.69 ± 45.27 m U/min per g, respectively, P s < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 ℃than in livers perfused at 30 and 37 ℃(0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, P s < 0.01). No sign of hypoxia was observed at 10 and 20 ℃, as highlighted by low lactate release respect to livers perfused at 30 and 37 ℃(121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/m L, respectively, P s < 0.02), and low relative Hi F-1α m RNA(0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, P s < 0.05) and protein(3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, P s < 0.05) expression.CONCLUSION: Livers perfused at 10 and 20 ℃ show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 ℃.
文摘The molecular basis for enhanced chemosensitivity of testicular germ cell tumors (GCT) has been an area of great interest, as it could potentially give us therapeutic leads in other resistant malignancies. Thus far, however, the increased sensitivity of C&T has been variously attributed to multiple factors -- an inability to detoxify cisplatin, a lack of export pumps, an inability to repair the DNA damage, an intact apoptotic cascade and lack of p53 mutation; but a unifying underlying etiology leading to the aforementioned processes and having a translational implication has so far been elusive. Herein, we offer evidence to support a potential significant role for the previously demonstrated low hypoxia inducible factor-la (HIF-la) expression in mediating the general exquisite chemosensitivity of testicular GCT, through the aforementioned processes. This molecular mechanism based hypothesis could have a significant translational implication in platinum refractory GCT as well as other platinum resistant malignancies.