Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acet...Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acetic acid,IAA),an endogenous hormone in plants,is involved in almost all plant growth and development processes and plays a role in plant immunity against pathogens.Gretchen Hagen3(GH3)is one of the early/primary auxin response genes.The aim of this study was to evaluate the function of MdGH3-2 and MdGH3-12 in the defense response of F.solani by treating MdGH3-2/12 RNAi plants with F.solani.The results show that under F.solani infection,RNAi of MdGH3-2/12 inhibited plant biomass accumulation and exacerbated root damage.After inoculation with F.solani,MdGH3-2/12 RNAi inhibited the biosynthesis of acid-amido synthetase.This led to the inhibition of free IAA combining with amino acids,resulting in excessive free IAA accumulation.This excessive free IAA altered plant tissue structure,accelerated fungal hyphal invasion,reduced the activity of antioxidant enzymes(SOD,POD and CAT),increased the reactive oxygen species(ROS)level,and reduced total chlorophyll content and photosynthetic ability,while regulating the expression of PR-related genes including PR1,PR4,PR5 and PR8.It also changed the contents of plant hormones and amino acids,and ultimately reduced the resistance to F.solani.In conclusion,these results demonstrate that MdGH3-2 and MdGH3-12 play an important role in apple tolerance to F.solani and ARD.展开更多
The homeodomain-leucine zipper(HD-Zip)family has been shown to perform amultitude of functions during plant development and stress responses;however,the familymembers and functions have not been identified in apple(Ma...The homeodomain-leucine zipper(HD-Zip)family has been shown to perform amultitude of functions during plant development and stress responses;however,the familymembers and functions have not been identified in apple(Malus×domestica).In this study,83 HD-Zips(MdHDZs)were identified in the apple genome.They were assembled into four subgroups according to the classification in Arabidopsis,where MdHDZs in the same subgroup had similar gene structures and conserved protein motifs.Putative cis-element analysis of MdHDZs promoter regions uncovered numerous elements related to the response of stress and plant hormones.In addition,twelve transcripts of the MdHDZs showed different expression patterns under salt,drought,low temperature and ABA stresses by quantitative reverse transcription-PCR(qRT-PCR)assay.To further explore the function of MdHDZs in apple,MdHDZ3 was selected to verify its function under salt,low temperature and ABA stresses;and genetic transformation was used to obtain MdHDZ3 transgenic apple calli.The results demonstrated that MdHDZ3 increased sensitivity to salt,low temperature and abscisic acid in apple calli,suggesting that MdHDZ3 plays an important role in response to stresses.Subcellular localization and three-dimensional structural analysis revealed that MdHDZ3 was a nuclear-localized protein.Taken together,these findings provide potential information for further identification of HD-Zip proteins in apple.展开更多
The expression changes of early response genes due to ventilation with high volume in adult rats in vivo were observed. Forty SD male rats were randomly divided into control and 30, 60, 90 and 120 min ventilation grou...The expression changes of early response genes due to ventilation with high volume in adult rats in vivo were observed. Forty SD male rats were randomly divided into control and 30, 60, 90 and 120 min ventilation groups, respectively (n=8 in each group). The animals were ventilated with tidal volume of 42 ml/kg and a PEEP level of 0 cmH_2O at a rate of 40 breaths per minute in room air with a ventilator was given to the small animals. The expression of Egr-1, C-jun and IL-1β mRNA and proteins was detected by RT-PCR and immunohistochemical technique, respectively. The pathological changes in lung tissues were examined by HE staining. The results indicated that the expression of Egr-1, C-jun and IL-1β mRNA was detectable at 30th min after overventilation, but there was no significant difference in comparison with that in control group until overventilation for 60 min. However, at 90 and 120 min there was a significent increase as compared with 30 min or control group (P<0.05). The expression of Egr-1, C-jun and IL-1β deteced by immunohistochemical assay also showed a similar tendency of the gradual increase. In the 120 min ventilation group, the expression intensity of Egr-1, C-jun and IL-1β proteins in lung cells was the strongest and the nuclear translocation was increased markedly in comparison with any other groups (P<0.05). HE staining suggested that the degree of lung injury was aggravated gradually with the ventialtion going on and had a similar tendency to the expression of these early response genes and proteins. The current data suggested that overventilation activated and upregulated the expression of early response genes and the expression of these genes may be taken as the early signal to predict the onset and degree of lung injury. These results may demonstrated partially that the expression of early response genes induced by the mechanical stretch is associated with biochamic lung injury.展开更多
AIM: To study the relationship between inflammatory response and liver regeneration (LR) at transcriptional level.METHODS: After partial hepatectomy (PH) of rats, the genes associated with inflammatory response ...AIM: To study the relationship between inflammatory response and liver regeneration (LR) at transcriptional level.METHODS: After partial hepatectomy (PH) of rats, the genes associated with inflammatory response were obtained according to the databases, and the gene expression changes during LR were checked by the Rat Genome 230 2.0 army. RESULTS: Two hundred and thirty-nine genes were associated with liver regeneration. The initial and total expressing gene numbers found in initiation phase (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) of liver regeneration were 107, 34, 126, 6 and 107, 92, 233, 145 respectively, showing that the associated genes were mainly triggered at the beginning of liver regeneration, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups: only up-regulated, predominantly up-, only down-, predominantly down-, up- and down-, involving 92, 25, 77, 14 and 31 genes, respectively. The total times of their up- and down-regulated expression were 975 and 494, respectively, demonstrating that the expressions of the majority of genes were increased, and that of a few genes were decreased. Their time relevance was classified into 13 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns, they were classified into 33 types, suggesting that the activities were diverse and complex during liver regeneration. CONCLUSION: Inflammatory response is closelyassociated with liver regeneration, in which 239 LR- associated genes play an important role.展开更多
AIM: To study the blood coagulation response after partial hepatectomy (PH) at transcriptional level. METHODS: After PH of rats, the associated genes with blood coagulation were obtained through reference to the datab...AIM: To study the blood coagulation response after partial hepatectomy (PH) at transcriptional level. METHODS: After PH of rats, the associated genes with blood coagulation were obtained through reference to the databases, and the gene expression changes in rat regenerating liver were analyzed by the Rat Genome 230 2.0 array. RESULTS: It was found that 107 genes were associated with liver regeneration. The initially and totally expressing gene numbers occurring in initiation phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) were 44, 11, 58, 7 and 44, 33, 100, 71 respectively, showing that the associated genes were mainly triggered in the forepart and prophase, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups: only up-, predominantly up-, only down-, predominantly down-, up- and down-regulation, involving 44, 8, 36, 13 and 6 genes, respectively, and the total times of their up- and down-regulation expression were 342 and 253, respectively, demonstrating that the number of the up-regulated genes was more than that of the down- regulated genes. Their time relevance was classified into 15 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns, they were classified into 29 types, suggesting that their protein activities were diverse and complex during liver regeneration.CONCLUSION: The blood coagulation response is enhanced mainly in the forepart, prophase and anaphase of liver regeneration, in which the response in the forepart, prophase of liver regeneration can prevent the bleeding caused by partial hepatectomy, whereas that in the anaphase contributes to the structure-function reorganization of regenerating liver. In the process, 107 genes associated with liver regeneration play an important role.展开更多
Fasciclin-like arabinogalactan proteins(FLAs),a subclass of arabinogalactan proteins(AGPs),are usually involved in cell development in plants.To investigate the expression profiling as well
AIM: To study the relationship between innate immune response and liver regeneration (LR) at transcriptional level.METHODS: Genes associated with innate immunity response were obtained by collecting the data from ...AIM: To study the relationship between innate immune response and liver regeneration (LR) at transcriptional level.METHODS: Genes associated with innate immunity response were obtained by collecting the data from databases and retrieving articles, Gene expression changes in rat regenerating liver were detected by rat genome 230 2.0 array.RESULTS: A total of 85 genes were found to be associated with LR. The initially and totally expressed number of genes at the phases of initiation [0.5-4 h after partial hepatectomy (PH)], transition from GO to G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) was 36, 9, 47, 4 and 36, 26, 78, 50, respectively, illustrating that the associated genes were mainly triggered at the initial phase of LR and worked at different phases. According to their expression similarity, these genes were classified into 5 types: 41 up-regulated, 4 predominantly up-regulated, 26 downregulated, 6 predominantly down-regulated, and 8 approximately up/down-regulated genes, respectively. The expression of these genes was up-regulated 350 times and down-regulated 129 times respectively, demonstrating that the expression of most genes was enhanced while the expression of a small number of genes was decreased during LR. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities dudng LR were staggered. According to the gene expression patterns,they were classified into 28 types, indicating that the cellular physiological and biochemical activities were diverse and complicated during LR. CONCLUSION: Congenital cellular immunity is enhanced mainly in the forepart, prophase and anaphase of LR while congenital molecular immunity is increased dominantly in the forepart and anaphase of LR. A total of 85 genes associated with LR play an important role in innate immunity.展开更多
AIM: To study the genes associated with the responses to chemokines, nutrients, inorganic substances, organic substances and xenobiotics after rat partial hepatectomy (PH) at transcriptional level. METHODS: The associ...AIM: To study the genes associated with the responses to chemokines, nutrients, inorganic substances, organic substances and xenobiotics after rat partial hepatectomy (PH) at transcriptional level. METHODS: The associated genes involved in the five kinds of responses were obtained from database and literature, and the gene expression changes during liver regeneration in rats were checked by the Rat Genome 230 2.0 array. RESULTS: It was found that 60, 10, 9, 6, 26 genes respectively participating in the above five kinds of responses were associated with liver regeneration. The numbers of initially and totally expressed genes occurring in the initial phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure- functional reconstruction (66-168 h after PH) were 51, 19, 52, 6 and 51, 43, 98, 68 respectively, illustrating that the associated genes were mainly triggered in the initiation and transition stages, and functioned at different phases. According to their expression similarity, these genes were classified into 5 groups: only up- regulated (47), predominantly up-regulated (18), only down-regulated (24), predominantly down-regulated (10), and up- and down-regulated (8). The total times of their up-regulated and down-regulated expression were 441 and 221, demonstrating that the number of up- regulated genes is more than that of the down-regulated genes. Their time relevance and gene expression patterns were classifi ed into 14 and 26 groups, showing that the cell physiological and biochemical activitieswere staggered, diversifi ed and complicated during liver regeneration in rats. CONCLUSION: The chemotaxis was enhanced mainly in the forepart and metaphase of LR. The response of regenerating liver to nutrients and chemical substances was increased, whereas that to xenobiotics was not strong. One hundred and seven genes associated with LR play important roles in the responses to chemical substances.展开更多
DEAR EDITOR,Since our first identification of plasmid-mediated colistin resistance gene mcr-1 in 2015 (Liu et al., 2016), it has been described in human clinics, domestic animals, foods, and the environment worldwi...DEAR EDITOR,Since our first identification of plasmid-mediated colistin resistance gene mcr-1 in 2015 (Liu et al., 2016), it has been described in human clinics, domestic animals, foods, and the environment worldwide (Schwarz & Johnson, 2016). Although it is still rare, the emergence of mcr-I in wild animals is of great concern. We summarized two previous reports on mcr-1 in wild birds from Lithuania and Argentina to describe its emergence and characteristics in wildlife and highlight the potentially important role of wild animals, particularly birds, in its global transmission (Wang et al., 2017). The first detection of mcr-1 in wildlife in Asia was identified in an extended-spectrum β- lactamase-producing Escherichia coil strain isolated from Eurasian coot (Fulica atra),展开更多
Objective: To better understand the reason that Schistosoma japonicurn (S. japonicum) ultraviolet (UV)- radiated cercariae could not induce high level of protection in C57BL/6 mice. Methods: Microarray technolog...Objective: To better understand the reason that Schistosoma japonicurn (S. japonicum) ultraviolet (UV)- radiated cercariae could not induce high level of protection in C57BL/6 mice. Methods: Microarray technology was performed to investigate the gene transcription profile in skin draining lymph nodes (sdLNs) at 1 w after exposure to attenuated cercariae (AC) or normal cercariae (NC) of S. japonicum in C57BL/6 mice. The expressions of some representative genes were further confirmed by real-time PCR. Subsequently, the expressions of Th1/Th2 cytokine genes, cytotoxicity-related genes, as well as co-stimulator genes in spleens from AC-vaccinated and NC- infected mice were analyzed by real-time PCR at w 3 and 6 post-exposure. Results: The gene expressions of Th1 cytokines, including interferon-y (IFN-γ), interleukin (IL)-12 and tumor necrosis factor-α (TNF-α) in the sdLNs were significantly lower in AC-vaccinated mice than in NC-infected mice. Furthermore, the gene expressions of Th1- and Th2- cytokines, including IFN-γ, IL-12, TNF-α, IL-4 and IL-10, in the spleens from AC-vaccinated mice showed little changes at w 3 and 6 post-vaccination. In addition, cytotoxicity-related molecules including granzyme A, granzyme B, granzyme K, perforin 1 and Fas L were up-regulated from the early stage of vaccination, and peaked at the 3rd w after vaccination with UV-AC. Conclusion: UV-AC of S. japonicum could not ef- fectively induce a Thl response in C57BL/6 mice, which may be an explanation for the low protection against parasite challenge, and the role played by up-regulated expression of cytotoxicity-related genes in mice needs to be further investigated.展开更多
Euglena gracilis is a unicellular green eukaryotic microalga that features characteristics of both plants and animals.The photosynthetic function of its chloroplast is easily lost under stress resulting in bleached mu...Euglena gracilis is a unicellular green eukaryotic microalga that features characteristics of both plants and animals.The photosynthetic function of its chloroplast is easily lost under stress resulting in bleached mutants,while the physiological role of their residual plastid DNAs remains unclear.In this study,we obtained five bleached mutants by ofloxacin(Ofl)treatment,identified 12 residual plastid genes in five bleached mutants,and determined the mRNA levels in the wild type E.gracilis(WT)and one bleached mutant(OflB2)under dark and light stimulation conditions by quantitative reverse transcribed PCR(qRTPCR).Results show that the expression of all selected plastid genes in both WT and OflB2 mutant did not change significantly in darkness,while their responses to light stimulation were different.Under the light stimulation conditions,half of the genes did not change significantly,while most of the other genes were down-regulated in OflB2 mutant and up-regulated in WT.Therefore,the bleached mutant retains part of the plastid genome and the plastid relic is responsive to light.Our research will help to understand the functions of residual plastid DNA and evolution of chloroplasts.展开更多
AIM: To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level. METHODS: Genes associated with the cellular immune response were obtained by collecting the data from datab...AIM: To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level. METHODS: Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array. RESULTS: A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from Go-G, (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity, these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total up- and down-regulated expression times were 419 and 274, respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns, they were classified into 21 types, showing the activities were diverse and complicated during LR.CONCLUSION: Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.展开更多
Verticillium dahliae Kleb.is a necrotrophic plant pathogen which causes serious soil borne vascular disease in cotton.The molecular basis the defense response of cotton to this pathogen is
A cDNA subtractive library enriched for dark-induced up-regulated ESTs was constructed by suppression subtractive hybridization(SSH) from leaf tissues of soybean cultivar DongNong L13 treated with short-day(8-h light/...A cDNA subtractive library enriched for dark-induced up-regulated ESTs was constructed by suppression subtractive hybridization(SSH) from leaf tissues of soybean cultivar DongNong L13 treated with short-day(8-h light/16-h dark) and long-day(16-h light/8-h dark) conditions.A total of 148 clones were sequenced,representing 76 unique ESTs which corresponded to about 20% of 738 clones from the cDNA library and showed a significant up-regulation of at least three fold verified by dot blot hybridization.The putative functions of ESTs were predicted by Blastn and Blastx.The 43 differentially expressed genes identified by subtractions were classified according to their putative functions generated by Blast analysis.Genetic functional analysis indicated that putative proteins encoded by these genes were related to diverse functions during organism development,which include biological regulation pathways such as transcription,signal transduction and programmed cell death,protein,nucleic acid and carbohydrate macromolecule degradation,the cell wall modification,primary and secondary metabolism and stress response.Two soybean transcription factors enhanced in SD conditions,GAMYB-binding protein and DNA binding protein RAV cDNAs that may be involved in SD soybean photoperiod response,had been isolated using 5'-and 3'-rapid amplification of cDNA ends(RACE)(Genbank Accession numbers DQ112540 and DQ147914).展开更多
Objective:To study the expression of hypoxia-inducible factor-1α (HIF-1α) in keloid and its correlation with angiogenesis, inflammatory response and apoptosis.Methods:Keloid samples removed in the Third People's...Objective:To study the expression of hypoxia-inducible factor-1α (HIF-1α) in keloid and its correlation with angiogenesis, inflammatory response and apoptosis.Methods:Keloid samples removed in the Third People's Hospital of Chengdu between June 2014 and March 2017 were selected as the pathology group of the research, and normal skin tissues removed in the Third People's Hospital of Chengdu due to injury were selected as the control group of the research. The expression of HIF-1α, angiogenesis molecules, inflammatory response cytokines and apoptosis molecules in keloid samples normal skin tissues were detected.Results: HIF-1α, VEGF165, Flt-1, Flk-1, Ang-1, Tie-2, PGE2, PGF2 , MIF, Livin and Survivin mRNA expression in keloid of pathology group were significantly higher than those in normal skin tissue of control group while TSG-6, Caspase-3, Caspase-7 and Caspase-9 mRNA expression were significantly lower than those in normal skin tissue of control group;HIF-1α mRNA expression was positively correlated with VEGF165, Flt-1, Flk-1, Ang-1, Tie-2, PGE2, PGF2 , MIF, Livin and Survivin mRNA expression, and negatively correlated with TSG-6, Caspase-3, Caspase-7 and Caspase-9 mRNA expression.Conclusion:HIF-1α is highly expressed in keloid and can promote angiogenesis and inflammatory response and inhibit apoptosis.展开更多
Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotto...Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.展开更多
Auxin signaling plays a significant role in the whole process of plant growth and development from embryogenesis to senescence.Auxin response factors(ARFs) are reported to regulate the expression of auxin response gen...Auxin signaling plays a significant role in the whole process of plant growth and development from embryogenesis to senescence.Auxin response factors(ARFs) are reported to regulate the expression of auxin response genes by binding to auxin response elements.ARF is the most critical transcription factor family which has been released in most species,but few reports in strawberry.In this study,the structure characterization of 12 FvARF genes in strawberry,their expression patterns at different development stages,different organizations,and different indole-3-acetic acid(IAA) treatments were analyzed.The expression of 12 FvARFs was found in all experiment tissues and showed almost the same trend during fruit development.All FvARFs respond to the treatment of IAA.Our study provides comprehensive information on ARF family in strawberry,including gene structures,chromosome locations,phylogenetic relationships and expression patterns.The information on FvARF genes paves the way for future research on strawberry ARF genes.展开更多
Triticum aestivum L. cv. Guizi 1(GZ1) is a drought-tolerant local purple wheat cultivar. It is not clear how purple wheat resists drought stress, but it could be related to anthocyanin biosynthesis. In this study, tra...Triticum aestivum L. cv. Guizi 1(GZ1) is a drought-tolerant local purple wheat cultivar. It is not clear how purple wheat resists drought stress, but it could be related to anthocyanin biosynthesis. In this study, transcriptome data from droughttreated samples and controls were compared. Drought slightly reduced the anthocyanin, protein and starch contents of GZ1 grains and significantly reduced the grain weight. Under drought stress, 16 682 transcripts were reduced, 27 766 differentially expressed genes(DEGs) were identified, and 379 DEGs, including DREBs, were related to defense response. The defense-response genes included response to water deprivation, reactive oxygen, bacteria, fungi, etc. Most of the structural and regulatory genes in anthocyanin biosynthesis were downregulated, with only Ta DFR, Ta OMT, Ta5,3GT, and Ta MYB-4 B1 being upregulated. Ta CHS, Ta F3H, TaCHI, Ta4CL, and TaF3’H are involved in responses to UV, hormones, and stimulus. Ta CHS-2D1, Ta DFR-2D2, Ta DFR-7D, TaOMT-5A, Ta5,3 GT-1B1, Ta5,3GT-3A, and Ta5,3GT-7B1 connect anthocyanin biosynthesis with other pathways, and their interacting proteins are involved in primary metabolism, genetic regulation, growth and development, and defense responses. There is further speculation about the defense-responsive network in purple wheat. The results indicated that biotic and abiotic stress-responsive genes were stimulated to resist drought stress in purple wheat GZ1, and anthocyanin biosynthesis also participated in the drought defense response through several structural genes.展开更多
Plant N starvation response is closely associated with the N signaling components that involve transduction of the low-N cues. In this study, we functionally characterized Ta ARR1, a cytokinin(CK) response regulator g...Plant N starvation response is closely associated with the N signaling components that involve transduction of the low-N cues. In this study, we functionally characterized Ta ARR1, a cytokinin(CK) response regulator gene in Triticum aestivum, in mediating the N starvation adaptation in plants. Ta ARR1 harbors two conserved domains specified by plant ARR family members;subcellular localization analysis indicated its target onto nucleus after endoplasmic reticulum assortment. Ta ARR1 displayed modified expression upon the N starvation stressor, showing upregulated expression in roots and leaves over a 27-h N starvation treatment and whose induced transcripts were gradually recovered along with progression of the N recovery treatment. The tobacco lines overexpressing Ta ARR1 displayed improved low-N stress tolerance, displaying enlarged phenotype, increased biomass and N accumulation, and enhanced glutamine synthetase(GS) activities compared with wild type(WT) following the N starvation treatment. Expression analysis on genes encoding the nitrate transporter(NRT) and GS proteins in Nicotiana tabacum revealed that Nt NRT2.2 and Nt GS3 are upregulated in expression in the N-deprived transgenic lines, whose expression patterns were contrasted to other above family genes that were unaltered on transcripts between the transgenic lines and WT. Transgene analysis validated the function of Nt NRT2.2 and Nt GS3 in regulating N accumulation, GS activity, growth traits, and N use efficiency in plants. These results suggested the internal connection between the Ta ARR1-mediated N starvation tolerance and the modified transcription of distinct N acquisitionand assimilation-associated genes. Our investigation together indicates that Ta ARR1 is essential in plant N starvation adaptation due to the gene function in transcriptionally regulating distinct NRT and GS genes that affect plant N uptake and assimilation under the N starvation condition.展开更多
Helicobacter pylori(H. pylori) infection is the most common bacterial infection worldwide. Persistent infection of the gastric mucosa leads to inflammatory processes and may remain silent for decades or progress causi...Helicobacter pylori(H. pylori) infection is the most common bacterial infection worldwide. Persistent infection of the gastric mucosa leads to inflammatory processes and may remain silent for decades or progress causing more severe diseases, such as gastric adenocarcinoma. The clinical consequences of H. pylori infection are determined by multiple factors, including host genetic predisposition, gene regulation, environmental factors and heterogeneity of H. pylori virulence factors. After decades of studies of this successful relationship between pathogen and human host, various mechanisms have been elucidated. In this review, we have made an introduction on H. pylori infection and its virulence factors, and focused mainly on modulation of host immune response triggered by bacteria, changes in the pattern of gene expression in H. pylori-infected gastric mucosa, with activation of gene transcription involved in defense mechanisms, inflammatory and immunological response, cell proliferation and apoptosis. We also highlighted the role of bacteria eradication on gene expression levels. In addition, we addressed the recent involvement of different microRNAs in precancerous lesions, gastric cancer, and inflammatory processes induced by bacteria. New discoveries in this field may allow a better understanding of the role of major factors involved in the pathogenic mechanisms of H. pylori.展开更多
基金supported by the Earmarked Fund for the China Agriculture Research System(CARS-27)the Key Science and Technology Special Projects of Shaanxi Province,China(2020zdzx03-01-02).
文摘Apple replant disease(ARD)has led to severe yield and quality reduction in the apple industry.Fusarium solani(F.solani)has been identified as one of the main microbial pathogens responsible for ARD.Auxin(indole-3-acetic acid,IAA),an endogenous hormone in plants,is involved in almost all plant growth and development processes and plays a role in plant immunity against pathogens.Gretchen Hagen3(GH3)is one of the early/primary auxin response genes.The aim of this study was to evaluate the function of MdGH3-2 and MdGH3-12 in the defense response of F.solani by treating MdGH3-2/12 RNAi plants with F.solani.The results show that under F.solani infection,RNAi of MdGH3-2/12 inhibited plant biomass accumulation and exacerbated root damage.After inoculation with F.solani,MdGH3-2/12 RNAi inhibited the biosynthesis of acid-amido synthetase.This led to the inhibition of free IAA combining with amino acids,resulting in excessive free IAA accumulation.This excessive free IAA altered plant tissue structure,accelerated fungal hyphal invasion,reduced the activity of antioxidant enzymes(SOD,POD and CAT),increased the reactive oxygen species(ROS)level,and reduced total chlorophyll content and photosynthetic ability,while regulating the expression of PR-related genes including PR1,PR4,PR5 and PR8.It also changed the contents of plant hormones and amino acids,and ultimately reduced the resistance to F.solani.In conclusion,these results demonstrate that MdGH3-2 and MdGH3-12 play an important role in apple tolerance to F.solani and ARD.
基金Thiswork was supported by National Key Research and Development Program of China(Grant No.2018YFD1000200)the National Natural Science Foundation of China(Grant Nos.U1706202,31972375)+1 种基金Ministry of Agriculture(Grant No.CARS-27)Shandong Province(Grant No.ZR2020YQ25).
文摘The homeodomain-leucine zipper(HD-Zip)family has been shown to perform amultitude of functions during plant development and stress responses;however,the familymembers and functions have not been identified in apple(Malus×domestica).In this study,83 HD-Zips(MdHDZs)were identified in the apple genome.They were assembled into four subgroups according to the classification in Arabidopsis,where MdHDZs in the same subgroup had similar gene structures and conserved protein motifs.Putative cis-element analysis of MdHDZs promoter regions uncovered numerous elements related to the response of stress and plant hormones.In addition,twelve transcripts of the MdHDZs showed different expression patterns under salt,drought,low temperature and ABA stresses by quantitative reverse transcription-PCR(qRT-PCR)assay.To further explore the function of MdHDZs in apple,MdHDZ3 was selected to verify its function under salt,low temperature and ABA stresses;and genetic transformation was used to obtain MdHDZ3 transgenic apple calli.The results demonstrated that MdHDZ3 increased sensitivity to salt,low temperature and abscisic acid in apple calli,suggesting that MdHDZ3 plays an important role in response to stresses.Subcellular localization and three-dimensional structural analysis revealed that MdHDZ3 was a nuclear-localized protein.Taken together,these findings provide potential information for further identification of HD-Zip proteins in apple.
基金This project was supported by a grant from National Edu-cational Ministry (No .20020487063) and National NaturalSciences Foundation of China (No .30471661) .
文摘The expression changes of early response genes due to ventilation with high volume in adult rats in vivo were observed. Forty SD male rats were randomly divided into control and 30, 60, 90 and 120 min ventilation groups, respectively (n=8 in each group). The animals were ventilated with tidal volume of 42 ml/kg and a PEEP level of 0 cmH_2O at a rate of 40 breaths per minute in room air with a ventilator was given to the small animals. The expression of Egr-1, C-jun and IL-1β mRNA and proteins was detected by RT-PCR and immunohistochemical technique, respectively. The pathological changes in lung tissues were examined by HE staining. The results indicated that the expression of Egr-1, C-jun and IL-1β mRNA was detectable at 30th min after overventilation, but there was no significant difference in comparison with that in control group until overventilation for 60 min. However, at 90 and 120 min there was a significent increase as compared with 30 min or control group (P<0.05). The expression of Egr-1, C-jun and IL-1β deteced by immunohistochemical assay also showed a similar tendency of the gradual increase. In the 120 min ventilation group, the expression intensity of Egr-1, C-jun and IL-1β proteins in lung cells was the strongest and the nuclear translocation was increased markedly in comparison with any other groups (P<0.05). HE staining suggested that the degree of lung injury was aggravated gradually with the ventialtion going on and had a similar tendency to the expression of these early response genes and proteins. The current data suggested that overventilation activated and upregulated the expression of early response genes and the expression of these genes may be taken as the early signal to predict the onset and degree of lung injury. These results may demonstrated partially that the expression of early response genes induced by the mechanical stretch is associated with biochamic lung injury.
基金Supported by the National Natural Science Foundation of China,No. 30270673
文摘AIM: To study the relationship between inflammatory response and liver regeneration (LR) at transcriptional level.METHODS: After partial hepatectomy (PH) of rats, the genes associated with inflammatory response were obtained according to the databases, and the gene expression changes during LR were checked by the Rat Genome 230 2.0 army. RESULTS: Two hundred and thirty-nine genes were associated with liver regeneration. The initial and total expressing gene numbers found in initiation phase (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) of liver regeneration were 107, 34, 126, 6 and 107, 92, 233, 145 respectively, showing that the associated genes were mainly triggered at the beginning of liver regeneration, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups: only up-regulated, predominantly up-, only down-, predominantly down-, up- and down-, involving 92, 25, 77, 14 and 31 genes, respectively. The total times of their up- and down-regulated expression were 975 and 494, respectively, demonstrating that the expressions of the majority of genes were increased, and that of a few genes were decreased. Their time relevance was classified into 13 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns, they were classified into 33 types, suggesting that the activities were diverse and complex during liver regeneration. CONCLUSION: Inflammatory response is closelyassociated with liver regeneration, in which 239 LR- associated genes play an important role.
基金Supported by the National Natural Science Foundation of China, No. 30270673
文摘AIM: To study the blood coagulation response after partial hepatectomy (PH) at transcriptional level. METHODS: After PH of rats, the associated genes with blood coagulation were obtained through reference to the databases, and the gene expression changes in rat regenerating liver were analyzed by the Rat Genome 230 2.0 array. RESULTS: It was found that 107 genes were associated with liver regeneration. The initially and totally expressing gene numbers occurring in initiation phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) were 44, 11, 58, 7 and 44, 33, 100, 71 respectively, showing that the associated genes were mainly triggered in the forepart and prophase, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups: only up-, predominantly up-, only down-, predominantly down-, up- and down-regulation, involving 44, 8, 36, 13 and 6 genes, respectively, and the total times of their up- and down-regulation expression were 342 and 253, respectively, demonstrating that the number of the up-regulated genes was more than that of the down- regulated genes. Their time relevance was classified into 15 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns, they were classified into 29 types, suggesting that their protein activities were diverse and complex during liver regeneration.CONCLUSION: The blood coagulation response is enhanced mainly in the forepart, prophase and anaphase of liver regeneration, in which the response in the forepart, prophase of liver regeneration can prevent the bleeding caused by partial hepatectomy, whereas that in the anaphase contributes to the structure-function reorganization of regenerating liver. In the process, 107 genes associated with liver regeneration play an important role.
文摘Fasciclin-like arabinogalactan proteins(FLAs),a subclass of arabinogalactan proteins(AGPs),are usually involved in cell development in plants.To investigate the expression profiling as well
基金Supported by the National Natural Science Foundation of China, No. 30270673
文摘AIM: To study the relationship between innate immune response and liver regeneration (LR) at transcriptional level.METHODS: Genes associated with innate immunity response were obtained by collecting the data from databases and retrieving articles, Gene expression changes in rat regenerating liver were detected by rat genome 230 2.0 array.RESULTS: A total of 85 genes were found to be associated with LR. The initially and totally expressed number of genes at the phases of initiation [0.5-4 h after partial hepatectomy (PH)], transition from GO to G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) was 36, 9, 47, 4 and 36, 26, 78, 50, respectively, illustrating that the associated genes were mainly triggered at the initial phase of LR and worked at different phases. According to their expression similarity, these genes were classified into 5 types: 41 up-regulated, 4 predominantly up-regulated, 26 downregulated, 6 predominantly down-regulated, and 8 approximately up/down-regulated genes, respectively. The expression of these genes was up-regulated 350 times and down-regulated 129 times respectively, demonstrating that the expression of most genes was enhanced while the expression of a small number of genes was decreased during LR. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities dudng LR were staggered. According to the gene expression patterns,they were classified into 28 types, indicating that the cellular physiological and biochemical activities were diverse and complicated during LR. CONCLUSION: Congenital cellular immunity is enhanced mainly in the forepart, prophase and anaphase of LR while congenital molecular immunity is increased dominantly in the forepart and anaphase of LR. A total of 85 genes associated with LR play an important role in innate immunity.
基金Supported by the National Natural Science Foundation of China, No. 30270673
文摘AIM: To study the genes associated with the responses to chemokines, nutrients, inorganic substances, organic substances and xenobiotics after rat partial hepatectomy (PH) at transcriptional level. METHODS: The associated genes involved in the five kinds of responses were obtained from database and literature, and the gene expression changes during liver regeneration in rats were checked by the Rat Genome 230 2.0 array. RESULTS: It was found that 60, 10, 9, 6, 26 genes respectively participating in the above five kinds of responses were associated with liver regeneration. The numbers of initially and totally expressed genes occurring in the initial phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure- functional reconstruction (66-168 h after PH) were 51, 19, 52, 6 and 51, 43, 98, 68 respectively, illustrating that the associated genes were mainly triggered in the initiation and transition stages, and functioned at different phases. According to their expression similarity, these genes were classified into 5 groups: only up- regulated (47), predominantly up-regulated (18), only down-regulated (24), predominantly down-regulated (10), and up- and down-regulated (8). The total times of their up-regulated and down-regulated expression were 441 and 221, demonstrating that the number of up- regulated genes is more than that of the down-regulated genes. Their time relevance and gene expression patterns were classifi ed into 14 and 26 groups, showing that the cell physiological and biochemical activitieswere staggered, diversifi ed and complicated during liver regeneration in rats. CONCLUSION: The chemotaxis was enhanced mainly in the forepart and metaphase of LR. The response of regenerating liver to nutrients and chemical substances was increased, whereas that to xenobiotics was not strong. One hundred and seven genes associated with LR play important roles in the responses to chemical substances.
基金partially supported by grants from the National Key Basic Research Program of China(2013CB127200)the National Natural Science Foundation of China(81661138002)
文摘DEAR EDITOR,Since our first identification of plasmid-mediated colistin resistance gene mcr-1 in 2015 (Liu et al., 2016), it has been described in human clinics, domestic animals, foods, and the environment worldwide (Schwarz & Johnson, 2016). Although it is still rare, the emergence of mcr-I in wild animals is of great concern. We summarized two previous reports on mcr-1 in wild birds from Lithuania and Argentina to describe its emergence and characteristics in wildlife and highlight the potentially important role of wild animals, particularly birds, in its global transmission (Wang et al., 2017). The first detection of mcr-1 in wildlife in Asia was identified in an extended-spectrum β- lactamase-producing Escherichia coil strain isolated from Eurasian coot (Fulica atra),
基金supported by the National Basic Research Program of China(973 Program,No.2007CB513106)the National Science Foundation of China(NSFC,No.30430600)
文摘Objective: To better understand the reason that Schistosoma japonicurn (S. japonicum) ultraviolet (UV)- radiated cercariae could not induce high level of protection in C57BL/6 mice. Methods: Microarray technology was performed to investigate the gene transcription profile in skin draining lymph nodes (sdLNs) at 1 w after exposure to attenuated cercariae (AC) or normal cercariae (NC) of S. japonicum in C57BL/6 mice. The expressions of some representative genes were further confirmed by real-time PCR. Subsequently, the expressions of Th1/Th2 cytokine genes, cytotoxicity-related genes, as well as co-stimulator genes in spleens from AC-vaccinated and NC- infected mice were analyzed by real-time PCR at w 3 and 6 post-exposure. Results: The gene expressions of Th1 cytokines, including interferon-y (IFN-γ), interleukin (IL)-12 and tumor necrosis factor-α (TNF-α) in the sdLNs were significantly lower in AC-vaccinated mice than in NC-infected mice. Furthermore, the gene expressions of Th1- and Th2- cytokines, including IFN-γ, IL-12, TNF-α, IL-4 and IL-10, in the spleens from AC-vaccinated mice showed little changes at w 3 and 6 post-vaccination. In addition, cytotoxicity-related molecules including granzyme A, granzyme B, granzyme K, perforin 1 and Fas L were up-regulated from the early stage of vaccination, and peaked at the 3rd w after vaccination with UV-AC. Conclusion: UV-AC of S. japonicum could not ef- fectively induce a Thl response in C57BL/6 mice, which may be an explanation for the low protection against parasite challenge, and the role played by up-regulated expression of cytotoxicity-related genes in mice needs to be further investigated.
基金Supported by the National Natural Science Foundation of China(No.31670116)the Guangdong Innovation Research Team Fund(No.2014ZT05S078)the Shenzhen Grant Plan for Science&Technology(Nos.JCYJ20160308095910917,JCYJ20170818100339597,JCYJ 20130329114940668)。
文摘Euglena gracilis is a unicellular green eukaryotic microalga that features characteristics of both plants and animals.The photosynthetic function of its chloroplast is easily lost under stress resulting in bleached mutants,while the physiological role of their residual plastid DNAs remains unclear.In this study,we obtained five bleached mutants by ofloxacin(Ofl)treatment,identified 12 residual plastid genes in five bleached mutants,and determined the mRNA levels in the wild type E.gracilis(WT)and one bleached mutant(OflB2)under dark and light stimulation conditions by quantitative reverse transcribed PCR(qRTPCR).Results show that the expression of all selected plastid genes in both WT and OflB2 mutant did not change significantly in darkness,while their responses to light stimulation were different.Under the light stimulation conditions,half of the genes did not change significantly,while most of the other genes were down-regulated in OflB2 mutant and up-regulated in WT.Therefore,the bleached mutant retains part of the plastid genome and the plastid relic is responsive to light.Our research will help to understand the functions of residual plastid DNA and evolution of chloroplasts.
基金Supported by the National Natural Science Foundation of China,No. 30270673
文摘AIM: To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level. METHODS: Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array. RESULTS: A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from Go-G, (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity, these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total up- and down-regulated expression times were 419 and 274, respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns, they were classified into 21 types, showing the activities were diverse and complicated during LR.CONCLUSION: Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.
文摘Verticillium dahliae Kleb.is a necrotrophic plant pathogen which causes serious soil borne vascular disease in cotton.The molecular basis the defense response of cotton to this pathogen is
文摘A cDNA subtractive library enriched for dark-induced up-regulated ESTs was constructed by suppression subtractive hybridization(SSH) from leaf tissues of soybean cultivar DongNong L13 treated with short-day(8-h light/16-h dark) and long-day(16-h light/8-h dark) conditions.A total of 148 clones were sequenced,representing 76 unique ESTs which corresponded to about 20% of 738 clones from the cDNA library and showed a significant up-regulation of at least three fold verified by dot blot hybridization.The putative functions of ESTs were predicted by Blastn and Blastx.The 43 differentially expressed genes identified by subtractions were classified according to their putative functions generated by Blast analysis.Genetic functional analysis indicated that putative proteins encoded by these genes were related to diverse functions during organism development,which include biological regulation pathways such as transcription,signal transduction and programmed cell death,protein,nucleic acid and carbohydrate macromolecule degradation,the cell wall modification,primary and secondary metabolism and stress response.Two soybean transcription factors enhanced in SD conditions,GAMYB-binding protein and DNA binding protein RAV cDNAs that may be involved in SD soybean photoperiod response,had been isolated using 5'-and 3'-rapid amplification of cDNA ends(RACE)(Genbank Accession numbers DQ112540 and DQ147914).
文摘Objective:To study the expression of hypoxia-inducible factor-1α (HIF-1α) in keloid and its correlation with angiogenesis, inflammatory response and apoptosis.Methods:Keloid samples removed in the Third People's Hospital of Chengdu between June 2014 and March 2017 were selected as the pathology group of the research, and normal skin tissues removed in the Third People's Hospital of Chengdu due to injury were selected as the control group of the research. The expression of HIF-1α, angiogenesis molecules, inflammatory response cytokines and apoptosis molecules in keloid samples normal skin tissues were detected.Results: HIF-1α, VEGF165, Flt-1, Flk-1, Ang-1, Tie-2, PGE2, PGF2 , MIF, Livin and Survivin mRNA expression in keloid of pathology group were significantly higher than those in normal skin tissue of control group while TSG-6, Caspase-3, Caspase-7 and Caspase-9 mRNA expression were significantly lower than those in normal skin tissue of control group;HIF-1α mRNA expression was positively correlated with VEGF165, Flt-1, Flk-1, Ang-1, Tie-2, PGE2, PGF2 , MIF, Livin and Survivin mRNA expression, and negatively correlated with TSG-6, Caspase-3, Caspase-7 and Caspase-9 mRNA expression.Conclusion:HIF-1α is highly expressed in keloid and can promote angiogenesis and inflammatory response and inhibit apoptosis.
基金supported by the State Key Laboratory of Aridland Crop Science,Gansu Agricultural University,China(GSCS-2019-10)the National Natural Science Foundation of China(31801414 and 32260478)+2 种基金the Gansu Province Science and Technology Program,China(20JR10RA531)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01E103)the Education Technology Innovation Project of Gansu Province,China(2022QB-076)。
文摘Activity of bc1 complex kinase(ABC1K)is an atypical protein kinase(aPK)that plays a crucial role in plant mitochondrial and plastid stress responses,but little is known about the responses of ABC1Ks to stress in cotton(Gossypium spp.).Here,we identified 40 ABC1Ks in upland cotton(Gossypium hirsutum L.)and found that the Gh ABC1Ks were unevenly distributed across 17 chromosomes.The GhABC1K family members included 35 paralogous gene pairs and were expanded by segmental duplication.The GhABC1K promoter sequences contained diverse cis-acting regulatory elements relevant to hormone or stress responses.The qRT-PCR results revealed that most Gh ABC1Ks were upregulated by exposure to different stresses.Gh ABC1K2-A05 and Gh ABC1K12-A07 expression levels were upregulated by at least three stress treatments.These genes were further functionally characterized by virus-induced gene silencing(VIGS).Compared with the controls,the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced cotton lines exhibited higher malondialdehyde(MDA)contents,lower catalase(CAT),peroxidase(POD)and superoxide dismutase(SOD)activities and reduced chlorophyll and soluble sugar contents under NaCl and PEG stress.In addition,the expression levels of six stress marker genes(Gh DREB2A,Gh SOS1,Gh CIPK6,Gh SOS2,Gh WRKY33,and Gh RD29A)were significantly downregulated after stress in the Gh ABC1K2-A05-and Gh ABC1K12-A07-silenced lines.The results indicate that knockdown of Gh ABC1K2-A05 and Gh ABC1K12-A07 make cotton more sensitive to salt and PEG stress.These findings can provide valuable information for intensive studies of Gh ABC1Ks in the responses and resistance of cotton to abiotic stresses.
基金financially supported by the National Natural Science Foundation of China(31872069)the Natural Science Foundation of Liaoning Province,China(201602659)+1 种基金the Liaoning BaiQianWan Talents Program,China(2016921067)the Program for Excellent Talents in University of Liaoning Province,China(LJQ2014069)
文摘Auxin signaling plays a significant role in the whole process of plant growth and development from embryogenesis to senescence.Auxin response factors(ARFs) are reported to regulate the expression of auxin response genes by binding to auxin response elements.ARF is the most critical transcription factor family which has been released in most species,but few reports in strawberry.In this study,the structure characterization of 12 FvARF genes in strawberry,their expression patterns at different development stages,different organizations,and different indole-3-acetic acid(IAA) treatments were analyzed.The expression of 12 FvARFs was found in all experiment tissues and showed almost the same trend during fruit development.All FvARFs respond to the treatment of IAA.Our study provides comprehensive information on ARF family in strawberry,including gene structures,chromosome locations,phylogenetic relationships and expression patterns.The information on FvARF genes paves the way for future research on strawberry ARF genes.
基金supported by the grants from the National Key R&D Program of China (2017YFD0100901-4 and 2016YFC0502604)the National Natural Science Foundation of China (31660390)+5 种基金the Major Special Project of Science and Technology Program in Guizhou, China (2017-5411-06 and 2017-5788)the Construction Project of State Engineering Technology Institute for Karst Desertification Control, China (2012FU125X13)the Innovation Talents Team Construction of Science and Technology in Guizhou, China (2016-5624)the Major Research Project of Innovation Group in Guizhou, China (2016-023)the Graduate Innovation Fund of Guizhou University, China (2017025)the Science and Technology Project in Guizhou, China (2019-4246)
文摘Triticum aestivum L. cv. Guizi 1(GZ1) is a drought-tolerant local purple wheat cultivar. It is not clear how purple wheat resists drought stress, but it could be related to anthocyanin biosynthesis. In this study, transcriptome data from droughttreated samples and controls were compared. Drought slightly reduced the anthocyanin, protein and starch contents of GZ1 grains and significantly reduced the grain weight. Under drought stress, 16 682 transcripts were reduced, 27 766 differentially expressed genes(DEGs) were identified, and 379 DEGs, including DREBs, were related to defense response. The defense-response genes included response to water deprivation, reactive oxygen, bacteria, fungi, etc. Most of the structural and regulatory genes in anthocyanin biosynthesis were downregulated, with only Ta DFR, Ta OMT, Ta5,3GT, and Ta MYB-4 B1 being upregulated. Ta CHS, Ta F3H, TaCHI, Ta4CL, and TaF3’H are involved in responses to UV, hormones, and stimulus. Ta CHS-2D1, Ta DFR-2D2, Ta DFR-7D, TaOMT-5A, Ta5,3 GT-1B1, Ta5,3GT-3A, and Ta5,3GT-7B1 connect anthocyanin biosynthesis with other pathways, and their interacting proteins are involved in primary metabolism, genetic regulation, growth and development, and defense responses. There is further speculation about the defense-responsive network in purple wheat. The results indicated that biotic and abiotic stress-responsive genes were stimulated to resist drought stress in purple wheat GZ1, and anthocyanin biosynthesis also participated in the drought defense response through several structural genes.
基金supported by the National Natural Science Foundation of China (31571664 and 31671686)the Key Research and Development Project of Hebei, China (17962901D)
文摘Plant N starvation response is closely associated with the N signaling components that involve transduction of the low-N cues. In this study, we functionally characterized Ta ARR1, a cytokinin(CK) response regulator gene in Triticum aestivum, in mediating the N starvation adaptation in plants. Ta ARR1 harbors two conserved domains specified by plant ARR family members;subcellular localization analysis indicated its target onto nucleus after endoplasmic reticulum assortment. Ta ARR1 displayed modified expression upon the N starvation stressor, showing upregulated expression in roots and leaves over a 27-h N starvation treatment and whose induced transcripts were gradually recovered along with progression of the N recovery treatment. The tobacco lines overexpressing Ta ARR1 displayed improved low-N stress tolerance, displaying enlarged phenotype, increased biomass and N accumulation, and enhanced glutamine synthetase(GS) activities compared with wild type(WT) following the N starvation treatment. Expression analysis on genes encoding the nitrate transporter(NRT) and GS proteins in Nicotiana tabacum revealed that Nt NRT2.2 and Nt GS3 are upregulated in expression in the N-deprived transgenic lines, whose expression patterns were contrasted to other above family genes that were unaltered on transcripts between the transgenic lines and WT. Transgene analysis validated the function of Nt NRT2.2 and Nt GS3 in regulating N accumulation, GS activity, growth traits, and N use efficiency in plants. These results suggested the internal connection between the Ta ARR1-mediated N starvation tolerance and the modified transcription of distinct N acquisitionand assimilation-associated genes. Our investigation together indicates that Ta ARR1 is essential in plant N starvation adaptation due to the gene function in transcriptionally regulating distinct NRT and GS genes that affect plant N uptake and assimilation under the N starvation condition.
基金PROPE/UNESP and FUNDUNESP(Process No.0302/019/13-PROPe/CDC)by support of english revision
文摘Helicobacter pylori(H. pylori) infection is the most common bacterial infection worldwide. Persistent infection of the gastric mucosa leads to inflammatory processes and may remain silent for decades or progress causing more severe diseases, such as gastric adenocarcinoma. The clinical consequences of H. pylori infection are determined by multiple factors, including host genetic predisposition, gene regulation, environmental factors and heterogeneity of H. pylori virulence factors. After decades of studies of this successful relationship between pathogen and human host, various mechanisms have been elucidated. In this review, we have made an introduction on H. pylori infection and its virulence factors, and focused mainly on modulation of host immune response triggered by bacteria, changes in the pattern of gene expression in H. pylori-infected gastric mucosa, with activation of gene transcription involved in defense mechanisms, inflammatory and immunological response, cell proliferation and apoptosis. We also highlighted the role of bacteria eradication on gene expression levels. In addition, we addressed the recent involvement of different microRNAs in precancerous lesions, gastric cancer, and inflammatory processes induced by bacteria. New discoveries in this field may allow a better understanding of the role of major factors involved in the pathogenic mechanisms of H. pylori.