Under the 3:1 internal resonance condition, the steady-state periodic response of the forced vibration of a traveling viscoelastic beam is studied. The viscoelastic behaviors of the traveling beam are described by th...Under the 3:1 internal resonance condition, the steady-state periodic response of the forced vibration of a traveling viscoelastic beam is studied. The viscoelastic behaviors of the traveling beam are described by the standard linear solid model, and the material time derivative is adopted in the viscoelastic constitutive relation. The direct multi-scale method is used to derive the relationships between the excitation frequency and the response amplitudes. For the first time, the real modal functions are employed to analytically investigate the periodic response of the axially traveling beam. The unde- termined coefficient method is used to approximately establish the real modal functions. The approximate analytical results are confirmed by the Galerkin truncation. Numerical examples are presented to highlight the effects of the viscoelastic behaviors on the steady-state periodic responses. To illustrate the effect of the internal resonance, the energy transfer between the internal resonance modes and the saturation-like phenomena in the steady-state responses is presented.展开更多
A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existenc...A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of...A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of the nonlinear oscillator, feedback controllers were designed. Bifurcation control equations were obtained by using the multiple scales method. And through the numerical analysis, good controller could be obtained by changing the feedback control gain. Then a feasible way of further research of saddle-node bifurcation was provided. Finally, an example shows that the feedback control method applied to the hanging bridge system of gas turbine is doable.展开更多
The primary resonance of a single-degree-of-freedom(SDOF)system subjected to a harmonic excitation is mitigated by the method of optimal time-delay feedback control.The stable regions of the time delays and feedback g...The primary resonance of a single-degree-of-freedom(SDOF)system subjected to a harmonic excitation is mitigated by the method of optimal time-delay feedback control.The stable regions of the time delays and feedback gains are obtained from the stable conditions of eigenvalue equation.Attenuation ratio is applied for evaluating the performance of the vibration control by taking aproportion of peak amplitude of primary resonance for the suspension system with or without controllers.Taking the attenuation ratio as the objective function and the stable regions of the time delays and feedback gains as constrains,the optimal feedback gains are determined by using minimum optimal method.Finally,simulation examples are also presented.展开更多
The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary re...The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary resonance of cables. The in-plane governing equations of the system are obtained when the harmonic excitation is applied to cables. The excitation mechanism due to the angle-variation of cable tension during motion is newly introduced. Galerkin’s method and the multi-scale method are used to obtain ordinary differential equations (ODEs) of the system and their modulation equations, respectively. Frequency- and force-response curves are used to explore dynamic behaviors of the system when harmonic excitations are symmetrically and asymmetrically applied to cables. More importantly, comparisons of frequency-response curves of the system obtained by two types of trial functions, namely, a common sine function and an exact piecewise function, of the shallow arch in Galerkin’s integration are conducted. The analysis shows that the two results have a slight difference;however, they both have sufficient accuracy to solve the proposed dynamic system.展开更多
In this paper,the equivalent circuit of the non-autonomous Josephson junction(JJ)is presented and the effect of the proper frequency on the phaseφis studied.We also study nonlinear resonance phenomena in the oscillat...In this paper,the equivalent circuit of the non-autonomous Josephson junction(JJ)is presented and the effect of the proper frequency on the phaseφis studied.We also study nonlinear resonance phenomena in the oscillations of a modified Josephson junction(MJJ).These oscillations are probed through a system of nonlinear differential equations and the multiple time scale method is employed to investigate all different types of resonance that occur.The results of primary,superharmonic and subharmonic resonances are obtained analytically.We show that the system exhibits hardening and softening behaviors,as well as hysteresis and amplitude hopping phenomena in primary and superharmonic resonances,and only the hysteresis phenomenon in subharmonic resonance.In addition,the stabilities and the steady state solutions in each type of resonances are kindly evaluated.The number of equilibrium points that evolve with time and their stabilities are also studied.Finally,the equations of motion are numerically integrated to check the correctness of analytical calculations.We further show that the dynamics of the MJJ is strongly influenced by its parameters.展开更多
基金Project supported by the State Key Program of the National Natural Science Foundation of China(No.11232009)the National Natural Science Foundation of China(Nos.11372171 and 11422214)
文摘Under the 3:1 internal resonance condition, the steady-state periodic response of the forced vibration of a traveling viscoelastic beam is studied. The viscoelastic behaviors of the traveling beam are described by the standard linear solid model, and the material time derivative is adopted in the viscoelastic constitutive relation. The direct multi-scale method is used to derive the relationships between the excitation frequency and the response amplitudes. For the first time, the real modal functions are employed to analytically investigate the periodic response of the axially traveling beam. The unde- termined coefficient method is used to approximately establish the real modal functions. The approximate analytical results are confirmed by the Galerkin truncation. Numerical examples are presented to highlight the effects of the viscoelastic behaviors on the steady-state periodic responses. To illustrate the effect of the internal resonance, the energy transfer between the internal resonance modes and the saturation-like phenomena in the steady-state responses is presented.
基金supported by the Fundamental Research Funds for the Central Universities(No.N090405009)
文摘A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
基金Project(10672053) supported by the National Natural Science Foundation of ChinaProject(2002AA503010) supported by the National High-Tech Research and Development Program of China
文摘A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of the nonlinear oscillator, feedback controllers were designed. Bifurcation control equations were obtained by using the multiple scales method. And through the numerical analysis, good controller could be obtained by changing the feedback control gain. Then a feasible way of further research of saddle-node bifurcation was provided. Finally, an example shows that the feedback control method applied to the hanging bridge system of gas turbine is doable.
基金Supported by the National Natural Science Foundation of China(51375228)the Aeronautical Science Fund(2013155202)+1 种基金the Fundamental Research Funds for the Central Universities(NJ20140012)the Priorty Academic Program Development of Jiangsu Higher Education Institutions
文摘The primary resonance of a single-degree-of-freedom(SDOF)system subjected to a harmonic excitation is mitigated by the method of optimal time-delay feedback control.The stable regions of the time delays and feedback gains are obtained from the stable conditions of eigenvalue equation.Attenuation ratio is applied for evaluating the performance of the vibration control by taking aproportion of peak amplitude of primary resonance for the suspension system with or without controllers.Taking the attenuation ratio as the objective function and the stable regions of the time delays and feedback gains as constrains,the optimal feedback gains are determined by using minimum optimal method.Finally,simulation examples are also presented.
基金The Scientific Research Foundation of Suzhou University of Science and Technology (No.332311106)the National Natural Science Foundation of China (No.52078087)111 Project of the Ministry of Education and the Bureau of Foreign Experts of China (No.B18062)。
基金Project supported by the National Natural Science Foundation of China(Nos.11572117,11502076,and 11872176)
文摘The nonlinear dynamic behaviors of a double cable-stayed shallow arch model are investigated under the one-to-one-to-one internal resonance among the lowest modes of cables and the shallow arch and external primary resonance of cables. The in-plane governing equations of the system are obtained when the harmonic excitation is applied to cables. The excitation mechanism due to the angle-variation of cable tension during motion is newly introduced. Galerkin’s method and the multi-scale method are used to obtain ordinary differential equations (ODEs) of the system and their modulation equations, respectively. Frequency- and force-response curves are used to explore dynamic behaviors of the system when harmonic excitations are symmetrically and asymmetrically applied to cables. More importantly, comparisons of frequency-response curves of the system obtained by two types of trial functions, namely, a common sine function and an exact piecewise function, of the shallow arch in Galerkin’s integration are conducted. The analysis shows that the two results have a slight difference;however, they both have sufficient accuracy to solve the proposed dynamic system.
文摘In this paper,the equivalent circuit of the non-autonomous Josephson junction(JJ)is presented and the effect of the proper frequency on the phaseφis studied.We also study nonlinear resonance phenomena in the oscillations of a modified Josephson junction(MJJ).These oscillations are probed through a system of nonlinear differential equations and the multiple time scale method is employed to investigate all different types of resonance that occur.The results of primary,superharmonic and subharmonic resonances are obtained analytically.We show that the system exhibits hardening and softening behaviors,as well as hysteresis and amplitude hopping phenomena in primary and superharmonic resonances,and only the hysteresis phenomenon in subharmonic resonance.In addition,the stabilities and the steady state solutions in each type of resonances are kindly evaluated.The number of equilibrium points that evolve with time and their stabilities are also studied.Finally,the equations of motion are numerically integrated to check the correctness of analytical calculations.We further show that the dynamics of the MJJ is strongly influenced by its parameters.