Abstract In this article, we put forward the concept of the (i,j)-type Lp-mixed alpine surface area, such that the notion of Lp-affine surface area which be shown by Lutwak is its special cases. Furthermore, applyin...Abstract In this article, we put forward the concept of the (i,j)-type Lp-mixed alpine surface area, such that the notion of Lp-affine surface area which be shown by Lutwak is its special cases. Furthermore, applying this concept, the Minkowski inequality for the (i, -p)-type Lp-mixed affine surface area and the extensions of the well-known Lp-Petty atone projection inequality are established, respectively. Besides, we give an affirmative answer for the generalized Lp-Winterniz monotonicity problem.展开更多
For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of wh...For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of whether Γ_(-p) K ? Γ_(-p) L implies ?_p(L) ≤ ?_p(K),where ?_p(K) denotes the L_p-affine surface area of K and K = Voln(K)^(-1/p) K. We prove a necessary and sufficient condition of an analog of the Shephard problem for the L_p-polar projection bodies.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11161019 and 11371224)the Science and Technology Plan of the Gansu Province(Grant No.145RJZG227)
文摘Abstract In this article, we put forward the concept of the (i,j)-type Lp-mixed alpine surface area, such that the notion of Lp-affine surface area which be shown by Lutwak is its special cases. Furthermore, applying this concept, the Minkowski inequality for the (i, -p)-type Lp-mixed affine surface area and the extensions of the well-known Lp-Petty atone projection inequality are established, respectively. Besides, we give an affirmative answer for the generalized Lp-Winterniz monotonicity problem.
基金Supported by the National Natural Science Foundation of China(11561020,11371224)Supported by the Science and Technology Plan of the Gansu Province(145RJZG227)
文摘For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of whether Γ_(-p) K ? Γ_(-p) L implies ?_p(L) ≤ ?_p(K),where ?_p(K) denotes the L_p-affine surface area of K and K = Voln(K)^(-1/p) K. We prove a necessary and sufficient condition of an analog of the Shephard problem for the L_p-polar projection bodies.