随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高...随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高尺度小波能量谱算法对微电网与大电网公共连接点(point of common coupling,PCC)处检测到的电流进行分解,提取适应不同容量情况的短路故障特征值,实现了不同容量下微电网短路故障的早期检测;利用小波能量谱特征结合基于正交最小二乘法(orthogonal least square,OLS)的径向基函数(radial basis function,RBF)神经网络算法提出一种适用于不同容量微电网的短路故障区域定位方法,并进行仿真验证;在此基础上设计并网模式微电网短路故障保护硬件系统,并进行实验验证。结果表明,所设计的保护系统能够快速、准确地同时实现并网模式下交流微电网短路故障的早期检测与区域定位。展开更多
针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在...针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。展开更多
文摘随着分布式电源(distributed generation,DG)的容量变化,微电网原有的供电结构发生改变,使得潮流大小、方向和功率结构发生变化,对快速检测和定位微电网中的短路故障区域提出了挑战。在MATLAB/Simulink中搭建低压交流微电网模型;通过高尺度小波能量谱算法对微电网与大电网公共连接点(point of common coupling,PCC)处检测到的电流进行分解,提取适应不同容量情况的短路故障特征值,实现了不同容量下微电网短路故障的早期检测;利用小波能量谱特征结合基于正交最小二乘法(orthogonal least square,OLS)的径向基函数(radial basis function,RBF)神经网络算法提出一种适用于不同容量微电网的短路故障区域定位方法,并进行仿真验证;在此基础上设计并网模式微电网短路故障保护硬件系统,并进行实验验证。结果表明,所设计的保护系统能够快速、准确地同时实现并网模式下交流微电网短路故障的早期检测与区域定位。
文摘针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。