-
题名持续学习算法在车辆目标识别上的应用
被引量:1
- 1
-
-
作者
孙家辉
马骊溟
-
机构
长安大学汽车学院
-
出处
《汽车实用技术》
2023年第15期73-81,共9页
-
文摘
自动驾驶汽车技术的日新月异,主要得益于深度学习和人工智能的进步。然而深度学习模型大多是在静态同分布数据集上进行训练,无法随着时间而适应或扩展其行为。针对这一问题,论文将持续学习模型运用于车辆目标识别领域进行研究。首先搭建可以使得算法流畅运行的环境,选定目标识别的原始图像数据集;在分析现有评估指标的基础上,选取适合于本次实验的评估指标,并采用卷积神经网络(CNN)、最接近类均值(NCM)、增量分类器与特征表示(iCaRL)三种持续学习算法对原始图像数据集进行学习训练与对比验证,通过实验验证了应用iCaRL算法使机器进行持续学习训练时,其精度和效率均优于其他两种方法。针对智能驾驶目标识别图像数据集不完善这一问题,构建了一个新的图像数据集,包含车辆、行人、交通标志及信号灯,将iCaRL算法应用于新建图像数据集进行研究,并在新建智能驾驶图像数据集上进行了训练与测试。结果表明,采用iCaRL算法能够较好地学习新建图像数据集,不会因为环境的改变而使得其性能发生大幅变化,测试结果良好,证明该方法可以在智能驾驶领域进行目标识别。
-
关键词
持续学习
icarl算法
车辆目标识别
图像数据集
-
Keywords
Continual learning
icarl algorithm
Vehicle target recognition
Image dataset
-
分类号
U27
[机械工程—车辆工程]
TP39
[自动化与计算机技术—计算机应用技术]
-