本文针对最优贝叶斯网络的结构学习问题,在动态规划算法(Dynamic Programming,DP)的基础上,使用IAMB算法(Incremental Association Markov Blanket,IAMB)计算得到的马尔科夫毯对评分计算过程进行约束,减少了评分的计算次数,提出了基于...本文针对最优贝叶斯网络的结构学习问题,在动态规划算法(Dynamic Programming,DP)的基础上,使用IAMB算法(Incremental Association Markov Blanket,IAMB)计算得到的马尔科夫毯对评分计算过程进行约束,减少了评分的计算次数,提出了基于马尔科夫毯约束的动态规划算法(Dynamic Programming Constrained with Markov Blanket,DPCMB),研究了IAMB算法中重要性阈值对DPCMB算法的各项性能指标的影响,给出了调整阈值的合理建议.实验结果表明,DPCMB算法可以通过调整重要性阈值,使该算法的精度与DP算法相当,极大地减少了算法的运行时间、评分计算次数和所需存储空间.展开更多
文摘本文针对最优贝叶斯网络的结构学习问题,在动态规划算法(Dynamic Programming,DP)的基础上,使用IAMB算法(Incremental Association Markov Blanket,IAMB)计算得到的马尔科夫毯对评分计算过程进行约束,减少了评分的计算次数,提出了基于马尔科夫毯约束的动态规划算法(Dynamic Programming Constrained with Markov Blanket,DPCMB),研究了IAMB算法中重要性阈值对DPCMB算法的各项性能指标的影响,给出了调整阈值的合理建议.实验结果表明,DPCMB算法可以通过调整重要性阈值,使该算法的精度与DP算法相当,极大地减少了算法的运行时间、评分计算次数和所需存储空间.