The high mountains of Hindu-Kush Karakoram and Himalaya(HKKH) contain a large volume of snow and ice, which are the primary sources of water for the entire mountainous population of HKKH. Thus, knowledge of these avai...The high mountains of Hindu-Kush Karakoram and Himalaya(HKKH) contain a large volume of snow and ice, which are the primary sources of water for the entire mountainous population of HKKH. Thus, knowledge of these available resources is very important in relation to their sustainable use. A Modified Positive Degree Day Model was used to simulate daily discharge with the contribution of snow and ice melt from the Shigar River Basin, Central Karakoram, Pakistan. The basin covers an area of 6,921 km2 with an elevation range of 2,204 to 8,611 m a.s.l.. Forty percent of the total area is glaciated among which 20% is covered by debris and remaining 80% by clean ice and permanent snow. To simulate daily discharge, the entire basin was divided into 26 altitude belts. Remotely sensed land cover types are derived by classifying Landsat images of 2009. Daily temperature and precipitation from Skardu meteorological station is used to calibrate the glacio-hydrological model as an input variable after correlating data with the Shigar station data(r=0.88). Local temperature lapse rate of 0.0075 °C/m is used. 2 °C critical temperature is used to separate rain and snow from precipitation. The model is calibrated for 1988~1991 and validated for 1992~1997. The model shows a good Nash-Sutcliffe efficiency and volume difference in calibration(0.86% and 0.90%) and validation(0.78% and 6.85%). Contribution of snow and ice melt in discharge is 32.37% in calibration period and 33.01% is validation period. The model is also used to predict future hydrological regime up to 2099 by using CORDEX South Asia RCM considering RCP4.5 and RCP8.5 climate scenarios.Predicted future snow and ice melt contributions in both RCP4.5 and RCP8.5 are 36% and 37%, respectively. Temperature seems to be more sensitive as compared to other input variables, which is why the contribution of snow and ice in discharge varies significantly throughout the whole century.展开更多
The spring flood of 2009 in the Red River Valley was exacerbated with severe ice breakup and ice jamming. To assist ice jam mitigation by cutting and breaking up the river ice cover before the flood season and to supp...The spring flood of 2009 in the Red River Valley was exacerbated with severe ice breakup and ice jamming. To assist ice jam mitigation by cutting and breaking up the river ice cover before the flood season and to support the operation of the Red River Floodway, Manitoba Water Stewardship is striving to model the occurrence of ice breakup and simulate the behaviour of ice jamming along the river. An important parameter in ice breakup forecasting is the ice thickness. RADARSAT-2 standard satellite images were collected along the course of the Red River in Manitoba during the 2009-2010 winter to help determine ice thicknesses along the river. Standard images can have transmit-receive polarizations in the horizontal-horizontal (HH) or horizontal-vertical (HV) configurations. Ice thickness measurements were taken in the field during the same time frame when the satellite passed over the Red River Valley. Good correlations were obtained between the HH-backscatter readings and the surveyed ice thicknesses. HV-backscatter readings correlate better with fresh snow depth measurements. Additionally, using same sensor incident angle and flight geometry allows ice thickening rate behavior over the course of the winter to be determined.展开更多
The critical velocity, or critical Froude number criterion has long been accepted as a means of determining frazil jam profiles. Field observations, however, indicated that the value of the critical velocity not only ...The critical velocity, or critical Froude number criterion has long been accepted as a means of determining frazil jam profiles. Field observations, however, indicated that the value of the critical velocity not only varier from river reach to river reach but also from time to time in a given reach. This clearly shows the deficiency of the critical velocity concept. The transport of frazil particles on the underside of an ice cover is similar to the transport of bed sediments in an alluvial river; the difference being only that in one the buoyant force exceeds the gravity force ware in the other the reverse is true. Frazil particles are generally transported along the cover in the form of the cover load. In this peper, ice transport capacity for the Hequ reach of the Yellow River is analyzed. The analysis of field data shows that the ice transport capacity can ho described by existing bed load transport formulas for low density sediments.展开更多
文摘The high mountains of Hindu-Kush Karakoram and Himalaya(HKKH) contain a large volume of snow and ice, which are the primary sources of water for the entire mountainous population of HKKH. Thus, knowledge of these available resources is very important in relation to their sustainable use. A Modified Positive Degree Day Model was used to simulate daily discharge with the contribution of snow and ice melt from the Shigar River Basin, Central Karakoram, Pakistan. The basin covers an area of 6,921 km2 with an elevation range of 2,204 to 8,611 m a.s.l.. Forty percent of the total area is glaciated among which 20% is covered by debris and remaining 80% by clean ice and permanent snow. To simulate daily discharge, the entire basin was divided into 26 altitude belts. Remotely sensed land cover types are derived by classifying Landsat images of 2009. Daily temperature and precipitation from Skardu meteorological station is used to calibrate the glacio-hydrological model as an input variable after correlating data with the Shigar station data(r=0.88). Local temperature lapse rate of 0.0075 °C/m is used. 2 °C critical temperature is used to separate rain and snow from precipitation. The model is calibrated for 1988~1991 and validated for 1992~1997. The model shows a good Nash-Sutcliffe efficiency and volume difference in calibration(0.86% and 0.90%) and validation(0.78% and 6.85%). Contribution of snow and ice melt in discharge is 32.37% in calibration period and 33.01% is validation period. The model is also used to predict future hydrological regime up to 2099 by using CORDEX South Asia RCM considering RCP4.5 and RCP8.5 climate scenarios.Predicted future snow and ice melt contributions in both RCP4.5 and RCP8.5 are 36% and 37%, respectively. Temperature seems to be more sensitive as compared to other input variables, which is why the contribution of snow and ice in discharge varies significantly throughout the whole century.
文摘The spring flood of 2009 in the Red River Valley was exacerbated with severe ice breakup and ice jamming. To assist ice jam mitigation by cutting and breaking up the river ice cover before the flood season and to support the operation of the Red River Floodway, Manitoba Water Stewardship is striving to model the occurrence of ice breakup and simulate the behaviour of ice jamming along the river. An important parameter in ice breakup forecasting is the ice thickness. RADARSAT-2 standard satellite images were collected along the course of the Red River in Manitoba during the 2009-2010 winter to help determine ice thicknesses along the river. Standard images can have transmit-receive polarizations in the horizontal-horizontal (HH) or horizontal-vertical (HV) configurations. Ice thickness measurements were taken in the field during the same time frame when the satellite passed over the Red River Valley. Good correlations were obtained between the HH-backscatter readings and the surveyed ice thicknesses. HV-backscatter readings correlate better with fresh snow depth measurements. Additionally, using same sensor incident angle and flight geometry allows ice thickening rate behavior over the course of the winter to be determined.
文摘The critical velocity, or critical Froude number criterion has long been accepted as a means of determining frazil jam profiles. Field observations, however, indicated that the value of the critical velocity not only varier from river reach to river reach but also from time to time in a given reach. This clearly shows the deficiency of the critical velocity concept. The transport of frazil particles on the underside of an ice cover is similar to the transport of bed sediments in an alluvial river; the difference being only that in one the buoyant force exceeds the gravity force ware in the other the reverse is true. Frazil particles are generally transported along the cover in the form of the cover load. In this peper, ice transport capacity for the Hequ reach of the Yellow River is analyzed. The analysis of field data shows that the ice transport capacity can ho described by existing bed load transport formulas for low density sediments.